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Preface

Landscape ecology continues to grow as an exciting discipline with much to offer 
for solving pressing and emerging problems in environmental science. Much of the 
strength of landscape ecology lies in its ability to address challenges over large 
areas, over spatial and temporal scales at which decision-making often occurs. As 
the world tackles issues related to sustainability and global change, the need for this 
broad perspective has only increased. Furthermore, spatial data and spatial analysis 
(core methods in landscape ecology) are critical for analyzing land-cover changes 
worldwide. While spatial dynamics have long been fundamental to terrestrial con-
servation strategies, land management, and reserve design, mapping and spatial 
themes are increasingly recognized as important for ecosystem management in 
aquatic, coastal, and marine systems. For these reasons, there is great demand for 
training in spatial analysis tools accessible to a wide audience.

The first edition of this book, Learning Landscape Ecology: A Practical Guide 
to Concepts and Techniques, was the first “hands-on” teaching guide for landscape 
ecology. The book introduced a diversity of tools and software in the field. The text 
sold over 5000 copies worldwide, was used at more than 55 universities, and had its 
second printing in 2006. However, landscape ecology has grown and quantitative 
methods have advanced substantially in the ensuing 15 years. In addition, this 
revised second edition of Learning Landscape Ecology complements the release of 
the second edition of Landscape Ecology in Theory and Practice (Turner and 
Gardner 2015), which pairs nicely with this updated “hands-on” teaching guide.

This second edition of Learning Landscape Ecology is purposefully more applied 
and international in its examples, approaches, perspectives, and contributors. It 
includes new advances in quantifying landscape structure and connectivity (such as 
graph theory), as well as labs that incorporate the latest scientific understanding of 
ecosystem services, resilience, social-ecological landscapes, and even seascapes. Of 
course, as before, the exercises emphasize easy-to-use, widely available software. 
We have also included introductory exposure to spatial analyses using R program-
ming language in several labs.
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What remains similar to the first edition is our dedication to making seemingly 
complex ideas easy to understand and use for scientists from diverse intellectual 
backgrounds and particularly for those early in their careers.

Sarah E. Gergel  
Vancouver, BC, Canada
Monica G. Turner 
Madison, WI, USA

Preface
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All necessary files, data, software, as well as any corrections and updates can be 
downloaded from the book website: http://landscape.forestry.ubc.ca

For a complete copy of the Instructor’s Notes (with Answer Key), please email 
Sarah E. Gergel (SEG): sarah.gergel@ubc.ca and supply your course number, title, 
and affiliation.

The first edition is accessible via the Springer website. Teaching materials origi-
nally supplied on the CD-ROM from the first edition can be obtained directly from 
SEG.

 Audience and Difficulty Levels

The content in the second edition spans a range of difficulty levels. These difficulty 
levels were assessed based on a combination of factors: the complexity of content, 
any assumed prior knowledge and technical expertise of students, and the amount 
of time likely needed to complete a lab. All of these factors also influence the 
amount of in-class supervision and oversight a lab likely requires, as well as instruc-
tor “prep” time prior to class. Each chapter is built around the idea of occupying a 
2–3 hour lab period, with various exceptions noted below. We’ve also made sugges-
tions for portions of labs suitable for “take-home” assignments, recognizing that 
in-class laboratory time at the computer can often be limited.

While there are far too many chapters for use in any one course, the variety of 
courses that could benefit from, or be built around, these labs include:

• Landscape Ecology
• Watershed Management and Monitoring
• Wildlife Conservation
• Forest Disturbance

Advice for Instructors

http://landscape.forestry.ubc.ca/
http://sarah.gergel@ubc.ca/


viii

• Conservation Planning
• Landscape Modeling and Spatial Analysis
• Landscape Sustainability and Resilience
• Spatial Statistics in Ecology
• Biogeography, Spatial Ecology or Macroecology
• Marine Spatial Planning
• Social-Ecological Systems and Ecosystem Services

As with the first edition, we have extensively beta-tested all of these labs and 
asked all contributors to create detailed Instructor’s Notes (available by email 
directly from SEG). However, various glitches are always a possibility—thus we 
strongly suggest instructors spend the necessary time in advance of teaching to 
“click” their way through the material prior to use in the classroom as well as check 
the website for the latest updates.

To assist in understanding the suggested audience for each lab, we have grouped 
chapters into four categories based on their level of difficulty. These suggestions are 
meant to assist instructors with course planning and time allotment. We also noted 
any chapter prerequisites as well as suggested corresponding readings from the 
companion text, Landscape Ecology in Theory and Practice (LETP).

 Quick and Fun

These shorter and/or low-tech, technically simpler chapters are especially suited for 
a shorter class period (perhaps 1–2 hours) or a course without a dedicated computer 
lab. These may even be suitable to use as a take-home assignment. Generally, little 
to no computer skills are required with the exception of entry-level familiarity with 
programs likely available on the laptops of all students (such as Excel, Google 
Earth, or a web browser). Very little prior knowledge of landscape ecology is 
assumed. Students may also appreciate these more straightforward labs as a break 
from the otherwise very challenging chapters in the rest of the book!

 Undergraduate

These labs are suitable for upper-level undergraduate students from a wide variety 
of environmental sciences (e.g., Geography, Ecology, Forestry, Zoology, and 
Botany). These labs might also be very reasonable choices for a graduate course 
(e.g., a course-based MSc program) depending on the background of the students. 
These labs might be a good way to begin a graduate course and ensure students from 
different disciplinary backgrounds are all “on the same page.”

Advice for Instructors
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 Graduate

These lab topics and tools include those used in research and applied conservation 
situations. These exercises assume a higher level background in environmental and/
or ecological science as well as knowledge of basic statistics. There are options for 
using R software (if desired) in addition to options utilizing freeware/shareware 
with provided data. Instructors are wise to expect some software installation and 
plan for basic troubleshooting prior to teaching as versions of operating systems and 
permissions may change.

 Advanced

These labs primarily explore research-oriented tools and fit well with a PhD-level 
pedagogical approach in terms of the levels of independence and critical thinking 
required. These exercises assume substantive prior knowledge of students as well as 
instructors, including one or more of the following: statistics including multivariate 
statistics, basic working ability in R, and/or comfort with GIS and geomatics tools 
(such as Arc). Most also have one or more lab prerequisites (completion of other 
chapters in this book). For these labs, instructors should also be well prepared in 
advance and anticipate troubleshooting for the particulars of their computer lab 
setup. These labs can easily occupy two full weeks of a regular (2–3 hour) lab 
period.

Advice for Instructors
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Part I
What Is a Landscape?  

Basic Concepts and Tools

This first module explores three distinct ways to identify, represent, and quantify a 
landscape. A landscape is an area that is heterogeneous in at least one aspect of 
interest. The concept of a landscape can include other ideas, an area that is very 
large in extent, or the inclusion of multiple different ecosystem types. In practice, 
however, landscape data are often derived from various geospatial data sources; 
thus, understanding the benefits, assumptions, and limitations of these diverse 
sources is fundamental to correct analysis of a landscape and interpretation of much 
of the published literature. The exercises in this module have no prerequisites, and 
by design, are meant to introduce the basic concepts of remote sensing to an audi-
ence with very little (or no) technical background in these topics. Chapter 1 explores 
the basic components of satellite imagery and how the sun’s energy (the electro-
magnetic spectrum) can be converted into a representation of the Earth’s surface 
(aka “a landscape”). Chapter 2 explores the special role of aerial photography—
which has been in use since well before the advent of satellite imagery—in assess-
ing long-term landscape change. Lastly, Chapter 3 introduces one of the newest and 
rapidly evolving ways to collect landscape-level data using crowd- sourced 
approaches that are amenable to citizen science. Depending on your background in 
geospatial technologies, we hope that this introduction to fundamental concepts 
helps you understand ways that maps are created and used to represent landscape 
information.

http://dx.doi.org/10.1007/978-1-4939-6374-4_1
http://dx.doi.org/10.1007/978-1-4939-6374-4_2
http://dx.doi.org/10.1007/978-1-4939-6374-4_3
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Chapter 1
Introduction to Remote Sensing

Nicholas C. Coops and Thoreau Rory Tooke

OBJECTIVES

Remote sensing is the science of gathering spatial information about the Earth’s 
surface (as well as the oceans and atmosphere) from a distance, using either hand-
held, aircraft, or satellite sensors. Such data are routinely used in landscape ecology 
to map, monitor, and manage landscapes. It is important to understand and fully 
appreciate the different types of electromagnetic radiation used to create geodata 
derived from remote sensing systems, the spectral and spatial properties of natural 
and manufactured materials, as well as the characteristics of airborne and satellite 
sensor systems. Understanding these fundamental aspects of remote sensing will 
assist landscape ecologists in understanding and distinguishing the diversity and 
heterogeneity of land cover types in their study regions and better assess how land-
scapes might have changed over time. This chapter will enable students to:

 1. Understand, explain, and quantify aspects of the electromagnetic spectrum 
(EMS) and how it can be used to describe different land cover;

 2. Explore the four basic resolutions of remote sensing imagery and consider how 
they impact the choice of imagery for specific applications;

 3. Learn how to display and conduct basic imagery analysis using GIS software; and
 4. Calculate and understand the role of vegetation indices in landscape monitoring.

This chapter is targeted to upper-level undergraduate students with little to no 
exposure to remote sensing. Some knowledge of GIS and/or Google Earth is helpful 
for a few exercises. In Exercises 1–3, students will not need a computer and will 
explore basic remote sensing concepts via pen-and-paper exercises. For Exercise 4, 
students will need access to a computer with ArcGIS (version 9 or higher) to 
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explore digital remote sensing imagery and how it can reveal different land cover 
features. In Advanced Exercise 5 (which also requires Google Earth), students will 
learn how to prepare quantitative representations of vegetation using NDVI, a veg-
etation index often used in landscape monitoring. Synthesis Exercise 6 promotes 
additional exploration of the remote sensing literature. Prior to starting this lab, 
students are encouraged to read Chapters 3 and 4 of Remote Sensing for GIS 
Managers by Aronoff (2005). If in-class time is limited, consider completing 
Exercise 1 prior to arrival in class.

 INTRODUCTION

Remote sensing has become an essential tool in many fields such as ecology, geog-
raphy, geomatics, and resource monitoring as images captured from the air provide 
important and often unique information on the spatial patterns on the Earth’s surface 
(Colwell 1960). As early as the 1910s, researchers were using remote sensing in 
forestry to better understand forest extent and condition. The advent of aerial pho-
tographic cameras in the 1920s resulted in the development of campaigns by many 
countries to acquire imagery to survey agricultural lands and to map land cover and 
land cover change. Satellite-based remote sensing began in the late 1950s and early 
1960s, and since then over 100 satellite-based sensors have been launched as part of 
national and international remote sensing programs.

The sensors used in remote sensing can be categorized as either active or passive. 
Passive, or optical, remote sensing systems rely on energy and illumination from the 
sun and utilize sensors which are sensitive to radiation reflected from the 400–2500 nm 
region of the electromagnetic spectrum. This range includes the visible, near-infrared, 
shortwave, and mid- and long-infrared regions of the spectrum (Figure 1.1).

Figure 1.1 Schematic representation of the electromagnetic spectrum (EMS)

0.0001nm    0.01nm               10nm         1000nm      0.01cm        1cm            1m           100m

Gamma Rays              X rays       Ultraviolet   Visible   Infrared              Radio

400nm        500nm       600nm      700nm

Blue      Green        Yellow          Red

Common Name

Visible Wavelengths

More Energy Less Energy

Wavelength

N.C. Coops and T.R. Tooke

http://dx.doi.org/10.1007/978-1-4939-6374-4_3
http://dx.doi.org/10.1007/978-1-4939-6374-4_4


5

Active remote sensing systems are different from passive systems in that energy 
is emitted from the sensor and either the return time or amount of energy reflected 
back is measured by the sensor. Having their own power source, such instruments can 
operate day or night and often under a range of weather conditions. For example, 
microwave systems can obtain data through cloud cover. The most common active 
remote sensing sensors are RADAR, which sends and detects microwave wavelengths 
between 1 mm and 1 m, and light detection and ranging (LIDAR), a more recent 
technology which most commonly sends and receives near-infrared laser pulses.

 Some Remote Sensing Basics

When considering remote sensing imagery for a given application, one must care-
fully consider image resolutions. These resolutions refer to the four key character-
istics of the imagery, including size of individual pixels, overall spatial extent, time 
interval between acquisitions, and lastly, the region(s) of the electromagnetic spec-
trum in which the sensor can acquire data and the level of detail (or discrimination) 
the sensor can provide. Each of these image resolution characteristics is briefly 
addressed below.

 Spatial Resolution

The spatial resolution of a remotely sensed image is the size of the minimum area 
that can be resolved by the sensor (Strahler et al. 1986) and is generally equated to 
the pixel size or the “grain” of an image. Depending on the sensor, the spatial reso-
lution can range from submeter to hundreds of meters. For aerial photography, spa-
tial resolution is based on the film speed and the size of the silver halide crystals 
(Nelson et al. 2001). In the case of digital sensors, an image with a spatial resolution 
of 30 m resolves a 30 × 30 m area into a single reflectance response. For satellite 
sensors, spatial resolution is set at the design phase of the spacecraft, whereas for 
airborne data, the spatial resolution is governed by the height of the aircraft above 
the ground.

The spatial resolution provides an indication of what type of detail can be 
observed on an image. High (or fine) spatial resolution imagery (<5 m) can provide 
information on small objects such as individual trees, buildings, and cars, whereas 
low or coarse spatial resolution (>100 m) is more appropriate for observing broad- 
scale phenomena such as ocean color, broad vegetation phenological responses, 
and cloud patterns. Historically, medium spatial resolution sensors (10–100 m) 
(such as Landsat Thematic Mapper (TM) and Système Probatoire d’Observation 
de la Terre (SPOT) multispectral imagery) have provided the optimal resolution 
for characterizing land cover change and regional disturbance (Franklin and 
Wulder 2002).

1 Introduction to Remote Sensing
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The spatial resolution of a sensor is linked to the swath width or instantaneous 
field of view of the sensor that ultimately determines the spatial extent of the cap-
tured image (Lillesand and Kiefer 2000) (Table 1.1). Sensors with a coarse spatial 
resolution can acquire data over much larger areas, when compared to sensors with 
very high spatial resolution. As an example, a Landsat TM scene has an image 
extent of 185 × 185 km (at 30 m spatial resolution), while the MODIS sensor with 
spatial resolutions of 250 m and larger has an image extent of several thousand 
kilometers. The spatial extent of data sources must also be considered along with 
data costs. Coarse spatial resolution data typically cover larger spatial extents and 
are therefore less expensive per unit area than high spatial resolution data sources. 
Some medium- resolution imagery (i.e., MODIS, SPOT Vegetation, and Landsat 
imagery) is freely available, whereas very high spatial resolution satellite systems 
are often run by private companies resulting in high per unit costs. Increasing spatial 
resolution presents challenges as image files tend to have large data storage require-
ments and longer computation processing times. Furthermore, the increased spec-
tral variability within an image with high spatial resolution imagery can confound 
many commonly used image classification methods such as when individual tree 
shadows are recorded (Wulder et al. 2004).

Table 1.1 A sample of spatial resolutions, scene sizes, and potential applications

Spatial 
resolution Multispectral sensor Spectral resolution

Spatial 
resolution 
(m)

Spatial 
extent 
(km)

Potential 
applications

Broad MODIS  
(MODerate Imaging 
Spectroradiometer)

405 nm–14.385 μm 250–1000 2330 Ocean color

Cloud 
characteristics

Vegetation 
productivity

Phenology

SPOT  
(Système Probatoire 
d’Observation  
de la Terre) 
VEGETATION

430–1750 nm 1000 1200

Moderate Landsat Thematic 
Mapper (TM)/
Enhanced Thematic 
Mapper+ (ETM+)

450–2350 nm 30 185 Land cover

Vegetation 
characteristics

Coastal and 
waterSPOT 480–1750 nm 5–20 60

Indian Resources 
Satellite (IRS)

520–1700 nm 23–70 142

Fine IKONOS 445–853 nm 4 11 Infrastructure 
mapping

QuickBird 450–890 nm 2.4 22 Individual tree 
delineation

WorldView-2 400–900 nm 1.85 16 Disaster 
monitoring

N.C. Coops and T.R. Tooke
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 Temporal Resolution

The temporal resolution indicates the time required for a sensor to return to the 
same location on the Earth’s surface (i.e., revisit). In the case of satellite systems, 
temporal resolution is a function of the orbit, image extent, and the capacity of the 
sensor to tilt and obtain images at requested sites. For Landsat Thematic Mapper 
imagery, the temporal resolution is 16 days, whereas MODIS with larger extent 
scene and pixel size has a 1-day revisit. Satellites such as IKONOS and QuickBird 
use sensors that can point in different directions with short revisit times (varying 
from 1 to 3.5 days). Such images, however, will be acquired at an angle (known as 
“off-nadir”). The temporal resolution of airborne sensors is often less critical as 
image collection via planes is often “on demand” (e.g., coincident with insect out-
breaks or fires) (Stone et al. 2001).

 Spectral Resolution

Spectral resolution can be considered in three components: the number, width, 
and location of the spectral wavelength bands detected by the sensor. Some sen-
sors acquire images similar to black and white photography using a single band 
(or channel) which captures the full range of the visible spectrum (and a small 
component of the infrared). Known as panchromatic, such images are often very 
useful as they can provide clear and precise spatial information. Detectors with 
multiple bands (i.e., multispectral) have separate spectral bands in the visible 
(such as blue, green, or red), near-infrared, and mid-infrared regions of the spec-
trum. As the number of bands increase, bandwidth (the range of wavelengths a 
band detects) often decreases. Sensors with hundreds of narrow spectral bands 
are known as hyperspectral. Currently, most operational remote sensing systems 
have a small number of broad spectral channels. For example, Landsat Enhanced 
Thematic Mapper+ (ETM+) has 7 spectral bands in the visible to infrared por-
tions of the spectrum, whereas MODIS has 32 spectral bands. Use of hyperspec-
tral data is increasing because it allows greater discrimination of attributes, such 
as tree species.

A simplified explanation of spectral resolution for three different sensors is 
shown in Figure 1.2. The first four bands of Landsat ETM+, SPOT XS, and 
QuickBird are depicted. Each spectral band covers a slightly different spectral range 
(or width of band), and the number of bands and the regions of the spectrum detected 
can vary among sensors.

1 Introduction to Remote Sensing
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 Radiometric Resolution

Radiometric resolution provides an indication of the information content of an 
image. It is often interpreted as the number of intensity (or gray) levels that a sensor 
uses to quantify the detected reflectance. Generally, the finer the radiometric resolu-
tion, the greater sensitivity to detecting small differences in reflectance.

Figure 1.3 provides a simple example of three different radiometric resolutions. 
In the case of 1 bit, the result would be a binary image of simply pure black and 
white pixels. 2 bit provides 4 gray levels, whereas 8 bit provides 256 different levels 
of gray. Most broad- and medium-resolution sensors are 8-bit radiometric resolu-
tion. High spatial resolution data such as QuickBird can be up to 11 bit.

Figure 1.2 The concept of spectral resolution for a subset of bands in three commonly used 
sensors
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 EXERCISES

EXERCISE 1: Understanding Spectral Reponses

As discussed earlier, most remote sensing systems measure the amount of reflected 
radiation from an object within a range of wavelengths of the electromagnetic spec-
trum. Objects that humans see as bright white, such as clouds or snow, have very 
high reflectance across all parts of the visible spectrum. For vegetation, leaves 
reflect more green light than blue or red. Human eyes are unable to see the near-
infrared (and many other) regions of the electromagnetic spectrum; however, spec-
tral reflectance curves can be used to show the pattern of reflectance for objects 
using parts of the spectrum invisible to the naked eye. Figure 1.4 shows a simple 
spectral curve for six different land cover classes. The X-axis ranges from 400 to 
1400 nm wavelengths, spanning the visible to the near-infrared region. The Y-axis 

Figure 1.3 The concept of radiometric resolution

1 bit 2 bit 8 bit
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indicates reflectance where 100% is when all light is reflected in a given wavelength 
from an object and 0% is total absorption of light by the object.

Q1 What wavelength range has the highest reflectance for snow and ice?

Q2 Identify two wavelength ranges where soil is differentiable from vegetation.

Q3  What is the reflectivity of water at 1200 nm? What are the implications of this 
for mapping vegetation and water?

Q4  Which wavelengths show the greatest differentiation in reflectance for the two 
vegetation types?

Q5  The visible part of the spectrum is from 400 to 700 nm. Why is there no separa-
tion between the two vegetation types across these wavelengths?

Q6  What wavelength region exhibits the largest change in reflectance for vegeta-
tion? Why is this potentially important when looking at different vegetation 
characteristics?

Q7  What land cover types look almost identical at 700 nm? What about at 1100 nm? 
What challenges would this pose if you are trying to use these spectral bands to 
map these land cover types?

Figure 1.4 Spectral curves for several land cover classes

N.C. Coops and T.R. Tooke
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EXERCISE 2: Detecting the Unknown

Now that you have an understanding of how features and land classes reflect/absorb 
electromagnetic radiation across the visible and near-infrared regions of the spec-
trum, in this exercise you will use this background to try and identify some unknown 
land cover types using only their spectral signatures.

Q8  Use the wavelength and percent reflectance data in Table 1.2 to plot the reflec-
tance curves by hand onto the provided plot on your handout (Figure 1.4).

Q9  Based on the known reflective properties of various classes and what you have 
learned about spectral signatures, which classes refer to cedar forest, deep 
water, and cloud? Explain how you determined this.

EXERCISE 3: What Can Be Seen from Space?

Most satellite systems have a limited number of spectral bands with which to detect 
a spectral signature. In the following exercise, you will draw the location and width 
of the spectral bands of a number of satellite sensors and estimate what each land 
cover types looks like when viewed by different sensors types.

Table 1.2 Reflectance characteristics of three unknown cover classes

nm Class 1 (%) Class 2 (%) Class 3 (%)

400 17 10 80

450 18 12 80.5

500 15 18 81

550 12 32 81.5

600 5 21 82

650 0 25 82

700 0 24 82

750 0 40 82

800 0 70 82

850 0 85 82.5

900 0 85 83

950 0 78 82.5

1000 0 75 82

1050 0 65 81.5

1100 0 55 81

1150 0 50 81

1200 0 38 81

1250 0 31 81

1300 0 29 80

1350 0 27.5 80

1400 0 25 80

1 Introduction to Remote Sensing
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• Using Table 1.3 and several printed copies of the vegetation spectral curve hand-
out as shown in (Figure 1.5), draw boxes that represent the spectral channels of 
the Landsat ETM+, Spot 5 XS, and QuickBird satellite sensors.

• Complete a new graph for each sensor and work in teams if appropriate. NOTE: 
The spectral range (X-axis) of this figure differs from Figure 1.2.

Q10  For each sensor, draw each spectral channel as a box (similar to Figure 1.2) 
using a separate copy of Figure 1.5 for each.

Q11  Once you have drawn the boxes for each sensor, draw a line across each box 
to approximately represent the average spectral response of vegetation within 
each spectral channel.

Q12  For each sensor, connect the average spectral responses for each box/channel 
to draw the plot of the vegetation spectral signature as seen by each sensor.

Q13  How does the averaged spectral curve differ between sensors? Which sensor 
reproduces the vegetation spectral curve the best? Which is more important, 
the number of bands or where they occur across the spectrum?

EXERCISE 4: Visual Representations of Satellite Imagery

Now that you have completed some manual interpretation of spectral signatures, we 
will move on to exploring actual satellite imagery using computer software. In the fol-
lowing exercise, you will use ArcMap, a powerful GIS analysis program for use with 
both vector and raster file formats. While sample Landsat satellite images for select 
locations have been supplied for this exercise, the entire Landsat archive covering the 
entire Earth is available for free and can be accessed using the United States Geological 
Survey’s Global Visualization Viewer (http://glovis.usgs.gov). Here, you will examine 
a Landsat scene covering the city of Vancouver in British Columbia, Canada.

In this section, you will explore basic computer visualization techniques, allowing 
you to produce various color representations of a single satellite image. Computer 
displays typically use a combination of red, green, and blue colors to display images 
on the screen. Each of these colors is assigned a color channel, and the different com-
binations of values for each channel are used to produce a range of colors. When view-
ing satellite imagery, we assign a different satellite band to each of the color channels. 
Since many sensors collect more than three bands of spectral information, as we 
learned earlier, there is a wide range of color combinations that can be displayed. The 
first combination of satellite bands to display will visualize the imagery as it normally 
appears to the human eye. This is what is referred to as a true color composite.

 1. Double-click Exercise4.mxd to start ArcMap with the Vancouver Landsat 
imagery.

N.C. Coops and T.R. Tooke
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Table 1.3 Spectral ranges of selected satellite sensors

Sensor Wavelength range (nm)

Landsat ETM+
Blue 450–510

Green 520–605

Red 630–690

Near infrared 750–900

Shortwave infrared 1550–1750

Thermal 10,400–12,500

Shortwave infrared 2080–2350

SPOT 5 XS
Green 500–590

Red 610–680

Near infrared 790–890

Shortwave infrared 1580–1750

QuickBird
Blue 450–520

Green 520–600

Red 630–690

Near infrared 760–900

Figure 1.5 Typical vegetation spectrum

1 Introduction to Remote Sensing
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 2. Right-click the LandsatYVR raster, choose Properties, and then select the 
Symbology tab from the top menu.

Notice the bands and pull-down menus associated with each color channel. Bands 
1, 2, and 3 of the Landsat imagery correspond with the blue, green, and red region 
of the spectrum, respectively.

 3. Now click on the Histograms button and notice the statistics for each of the 
color channels.

Q14  What is the range of values for each color channel?

In this imagery, there are 256 values (0–255) that can be stored for each band. 
Recall the earlier description of radiometric resolution, in terms of bits, which 
are the basic unit of information in computing and can only be one of two values 
(0 or 1). Notice that 28 = 256; therefore this imagery has an 8-bit radiometric 
resolution.

Satellite imagery captured across different regions of the EMS allows us to 
examine information not visible to the human eye. Interestingly, many organisms 
perceive different regions of the EMS than humans can detect (e.g., ultraviolet light 
is visible to some birds and bees). Humans can, however, create alternative views of 
a landscape that highlight various features using different combinations of satellite 
bands with different color channels, creating a false color composite. There is a 
wide range of false color composites that can be created from combining different 
satellite bands.

 4. Select one of the three unique regions (Dubai, Haiti, oil sands) and open the 
associated .mxd file. Explore different, unique combination of bands that high-
light different feature attributes.

Q15  Create two separate representations of your chosen scene. Try to create con-
trasting representations which highlight different features. Create your new 
representations by associating different bands with different color channels. 
List some of the observable features in each of your two new images.

 5. Lastly, test your feature identifications using higher spatial resolution imagery. 
Open the program Google Earth from the start menu, and direct the viewer to 
the same location as your Landsat image. Use the provided *.xml files, if needed, 
which are compatible with Google Earth.

Q16  How accurate were your observations? Did anything in particular surprise 
you? Find someone in the class exploring a different location. Discuss some 
of the similarities and differences between your regions, the features visible in 
your satellite-image color composites, and how they compare with higher spa-
tial resolution imagery.

N.C. Coops and T.R. Tooke
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ADVANCED EXERCISE 5: Using Satellite Indices - the Normalized 
Difference Vegetation Index (NDVI)

To represent specific attributes, remote sensing scientists often compute the differ-
ence between image bands to produce a new layer. The resulting layer is referred to 
as an index, due to its ability to facilitate the extraction of specific information related 
to ground features. A common index in remote sensing is the Normalized Difference 
Vegetation Index (NDVI). This index utilizes the difference between the near-infra-
red region of the spectrum (where vegetation displays high reflectance) and the red 
region (where vegetation has a very low reflectance). The utility of NDVI comes 
from its ability not only in identifying vegetation classes but also in differentiating 
vegetation species and assessing the condition and health of vegetation. NDVI has 
been used extensively for a wide range of ecological mapping applications, in har-
vesting operations, as well as in conservation planning and vegetation assessment.

Calculating NDVI

In this exercise, you will learn how to create an NDVI image using Landsat satellite 
imagery and understand how it can be used as an index of vegetation condition. You 
will see how different land cover types produce different NDVI values. Vegetated 
areas generally have higher NDVI values, making the development of a vegetation 
mask (or layer) a relatively routine and easy task.

 1. Double-click AdvancedExercise.mxd to start ArcMap with the same Vancouver 
Landsat imagery used in the previous exercise.

Notice that each of the bands from the Vancouver Landsat scene is now loaded 
independently. Each band represents a region of the electromagnetic spectrum as 
indicated in Table 1.3 starting with band 1 as blue.

 2. Compare the differences in the radiance between bands by turning each of the 
bands on and off by clicking the check box beside each layer.

Q17  From your knowledge of spectral signatures, which two of the Landsat satel-
lite band numbers correspond with the highest and lowest reflectance for 
vegetation?

 3. From the top menu, choose Geoprocessing and select Search For Tools.
 4. In the search space, type Raster Calculator and then hit Enter and select the 

Raster Calculator (Spatial Analyst) tool from the top of the search list.

NOTE: The Spatial Analyst extension must be enabled before using the Raster 
Calculator tool. You can turn on the extension (if available with your license) by 
choosing Customize from the top menu, selecting Extensions, and ensuring that 
the Spatial Analyst box is checked.

1 Introduction to Remote Sensing
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 5. In the map algebra expression space, enter the following:
Float(“LandsatYVR.tif–Band_4” − “LandsatYVR.tif–
Band_3”)/Float(“LandsatYVR.tif–Band_4” + “LandsatYVR.
tif–Band_3”)

• Then give the Output raster a location and name you will remember (and 
where you have permissions!) and click OK.

• The new layer should display a grayscale image of NDVI values

 6. Use the identify tool  to examine NDVI values for individual pixels in your 
NDVI layer.

Q18  Clearly some features have higher NDVI values than others. Using a combina-
tion of the color composite image and the NDVI layer, what cover types look 
to be at the extreme ends of the range of NDVI values?

Q19  Provide some ideas as to why different vegetative cover types display differ-
ent NDVI values

Q20  Return to Google Earth and check your work from Q18. Are there any cover 
types or features that presented NDVI values that seem surprising or incon-
gruous? Why might that be?

Q21  What are some ways that you might use NDVI to map vegetation cover? What 
other data are needed to accomplish this?

Image Thresholding

In the next few steps, you will learn to use the NDVI layer to classify vegetation 
using a thresholding technique. A threshold is a limit used to divide a continuous 
set of values. Thresholding is a common approach used in remote sensing to clas-
sify one or more land cover features from an image. Thresholding can be done both 
manually with user-determined threshold values or automatically using statistical 
methods.

 7. Using the identify tool  to explore the NDVI layer you created in the previ-
ous step. Find the lowest value that you consider to be vegetation. Feel free to 
use Google Earth as a reference.

 8. Open the Raster Calculator tool again, and in the map algebra expression space, enter
raster_NDVI>x

 where raster_NDVI is the name of the NDVI layer you created in the previous step
and x is your determined threshold value. Click OK.

The resulting layer is a binary image which contains two values. A value of 1 indicates 
that a condition has been met, and 0 indicates where a condition has not been met.

N.C. Coops and T.R. Tooke



17

Q22 In the binary image that you created, what do the values 1 and 0 represent?

Q23  What benefits does a binary image like this offer for analysis? What are the 
disadvantages?

Exporting Your Images

The last step is to export your binary image so you can use it at a later date or with 
different software packages. One of the most common storage file formats for spa-
tial raster datasets is a GeoTIFF, which you will use here to store your classified 
vegetation layer.

 9. Right-click the most recent layer representing the vegetation extraction in the 
Table of Contents pane, choose Data, and select Export Data.

 10. From the Format drop-down menu, select TIFF.
 11. Choose a location folder and enter a name for your export layer (ensuring that 

it ends with the extension .tif ) and then click Save.

Q24  Do a quick web/article search and list several of the various satellite-image-
based indices that have been used to identify land cover features or phenom-
ena. Select an index from your list and apply it to one of the three other 
locations (Dubai, Haiti, oil sands). Discuss how the index you selected might 
be useful for informing land use management at your location.

SYNTHESIS EXERCISE 6: Remote Sensing Applications

From your understanding of this brief introduction to remote sensing and vegetation 
analysis, find a research article that interests you and is pertinent to your studies 
which utilizes remote sensing. Read and prepare a brief review. The purpose of 
doing this is to familiarize yourself with remote sensing literature and relate the 
remote sensing concepts above to your specific interests.

You may choose any paper on remote sensing of vegetation; however, the paper 
should be no more than 5 years old. The best way to conduct this search and find a 
paper is online or by browsing through the remote sensing journals available in 
university libraries. In addition, there are several remote sensing journals, all of 
which contain papers that would be quite suitable for this exercise. In your search, 
consider searching for the term NDVI.

Your summary should be about two pages long and include the following:
• Describe why this paper is of interest to you.
• How did you find the paper?
• What type of remote sensing imagery has been used?
• Was the NDVI, or a similar vegetation index, calculated?

1 Introduction to Remote Sensing
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• How was it used in the study?
• Location/region of the study.
• What are the general outcomes/results?
• What were some of the sources of error in the study? Were they discussed?
• A paragraph indicating if you would have undertaken the study any 

differently.

Be prepared to also hand in a copy of your chosen journal article when you hand 
in your write-up.

 CONCLUSIONS

Remote sensing is a dynamic and rapidly evolving field. You are encouraged to 
explore the recommended readings for additional ideas and applications for remote 
sensing. In addition, a subsequent chapter in this book (see Chapter 11 Using Spatial 
Statistics and Landscape Metrics to Compare Disturbance Mosaics explores the use 
of other vegetation indices for mapping disturbances such as fire and insect out-
breaks. This advanced chapter also explores the implications of using thresholding 
techniques versus binary maps to represent and analyze landscape disturbance, 
building on the foundations of remote sensing you examined here.
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Chapter 2
Historical Aerial Photography for Landscape 
Analysis

Jessica L. Morgan, Sarah E. Gergel, Collin Ankerson, Stephanie A. Tomscha, 
and Ira J. Sutherland

OBJECTIVES

Historical patterns and spatial heterogeneity can greatly influence dynamics of con-
temporary landscapes. Historical conditions lay the foundation for contemporary 
management options and can help guide restoration goals. While historical spatial 
data sources are not generally common, historical aerial photography provides the 
longest available, spatially contiguous record of landscape change. Aerial photogra-
phy has been routinely collected since the 1930s in many parts of the world and has 
aided land management for over 75 years. Aerial photography often forms the basis 
of a variety of maps routinely used by managers, including forest ecosystem inven-
tories and digital elevation models (or DEMs). Aerial photographs generally pro-
vide higher spatial resolution information than widely available (and free) satellite 
imagery (e.g., Landsat). Thus, aerial photographs have unique value for mapping 
historical landscape baselines and assessing long-term landscape change. For these 
reasons, understanding how information is derived from aerial photography is enor-
mously important for landscape ecologists. The objectives of this lab are to help 
students:

 1. Understand how landscape heterogeneity can be characterized using aerial 
photographs;

 2. Gain introductory exposure to the benefits and challenges associated with inter-
pretation of aerial photography; and

 3. Explore the utility of historical spatial data for characterizing baseline conditions 
and understanding landscape change.
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This lab is divided into several parts designed for teams of students to analyze 
aerial photography and then compare and discuss their results. Part 1 provides a fun 
introduction to viewing aerial photography “in stereo”. Part 2 explores the compara-
tive heterogeneity and fragmentation seen in historic and contemporary landscapes. 
Students manually photointerpret contemporary and historic images from the same 
landscape and then compare results with their classmates and to those from a profes-
sionally trained interpreter. Part 3 introduces additional considerations including 
potential sources of error in maps, how such uncertainties can impact their utility, and 
how terrain and productivity patterns can impact photo interpretation and landscape 
change. While our examples primarily focus on coastal temperate forests, it is impor-
tant to note that aerial photographs are used to assess and monitor a diversity of 
landscapes all over the world, including aquatic, marine, tropical and polar environ-
ments. Several of the exercises can be adapted to use imagery from your local region 
and additional more advanced exercises are available on the book website.

At a minimum, students will need printed copies of the images in the StereoPairs 
and OrthoPhotos folders as well as the tables which are provided digitally (see 
book website), along with a few colored pens/pencils and a calculator. Your instruc-
tor may also wish to provide some plastic overlay transparencies on which to draw. 
A hair tie, for holding one’s hair back, may also be helpful. A computer is not neces-
sary if ALL the images in the rest of the Spatial Data folder are printed; otherwise, 
students will need to view these additional images on-screen. Your instructor may 
wish to provide a stereoscope, which is useful but not required, for demonstrating 
3-dimensional (3-D) concepts in the lab.

 INTRODUCTION

Aerial photography is used extensively in environmental monitoring and manage-
ment (Morgan et al. 2010). Captured over a variety of spatial scales, aerial photo-
graphs are used for a wide variety of purposes in resource management, from 
detailed surveys of individual trees to general land cover mapping over broad 
extents. Common uses include creation of forest inventories, disturbance mapping, 
estimating productivity, and wildlife management (Avery and Berlin 1992). The 
fine detail (high spatial resolution) of some aerial photography is particularly well 
suited for mapping small features or ecosystems (Fensham and Fairfax 2002; 
Tuominen and Pekkarinen 2005). For example, aerial photographs have been used 
to identify canopy gaps and forest structures important for wildlife (Fox et al. 2000). 
Additional examples are shown in Figure 2.1. Examine these four images and try to 
identify some recognizable features.

Archival historical aerial photography can also provide valuable information on 
prior or baseline landscape conditions, making the imagery useful for mapping and 
monitoring change over time (Morgan and Gergel 2013; Cohen et al. 1996; Fensham 
and Fairfax 2002). The first known aerial photograph was captured in 1858 from a 
balloon over France. However regular collection did not begin until World War I, 
primarily for military reconnaissance (Lillesand and Kiefer 2004). Because historical 
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aerial photography offers a window into the past, it has been invaluable for detecting 
encroachment of invasive species over time (Hudak and Wessman 1998; Laliberte 
et al. 2004; Mast et al. 1997).

 Part 1. Viewing Stereo pairs

Aerial photographs are captured with an airborne camera and represent the reflec-
tance (or relative brightness) of features on the ground. Aerial photographs are often 
acquired along a flightline (i.e., a path flown in a constant direction over a targeted 
area). A critical component of collection along flightlines is that adjacent 

Figure 2.1 Examples of landscape features distinguishable from fine scale aerial photography. 
Shown is an area from Washington State, USA in 2006. More details can be found in Tomlinson 
et al. 2011 who contrasted this imagery with similar locations in 1949 to examine changes in fish 
habitat. (a) Sinuosity (curvature) of rivers and the extent of riparian zones (1:5000)

2 Historical Aerial Photography for Landscape Analysis



Figure 2.1 (continued) (b) Agricultural type (hay field vs. orchards) (1:5000). Orchards are 
 indicated with their dark green, regularly spaced tree crowns. Hay fields are beige with a smooth 
texture. (c) Sediment loads and relative depth in aquatic environments (1:10,000)
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photographs possess some degree of spatial overlap (often up to 60%). This overlap 
presents the landscape from two different viewpoints, and thus can be used to view 
various features in 3-dimensions. Any two adjacent photographs with overlap are 
referred to as photo pairs or stereo pairs and are most easily viewed in 3-D with 
the aid of a stereoscope.

EXERCISE 1: Seeing in Stereovision

Example stereo pairs have been provided in the folder labeled StereoPairs. If your 
instructor is able to provide a stereoscope, you can follow these steps. If no stereo-
scope is available, skip to the “Low-Tech” Method 2.

Figure 2.1 (continued) (d) Urban–wildland interface and urban density (number of houses or 
roads in an area) (1:10,000)

2 Historical Aerial Photography for Landscape Analysis
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Method 1: Stereoscope

To view with a stereoscope, the simplest approach is:

 1. Examine the two photographs and notice the zone of overlap (i.e., the portion of 
the landscape captured in both images).

 2. Place the photographs within the field of view of the scope. Be sure to place the 
left and right images under the corresponding left and right eyepieces.

 3. Within this overlapping zone, identify the same notable feature (or location) in 
each image with a finger.

 4. Now looking through the scope, align your two fingers so they match up within 
your field of view. The notable features should then also be close to aligned and 
thus appear 3-D.

Viewing in stereo is not easy for everyone, particularly for people with unequal 
vision in each eye. For those who find it easy with a stereoscope, you may even be 
able to view photo pairs in stereo without one.

Method 2: Low-Tech

 1. Using Figure 2.2, place an index card (or piece of folded paper ~20 cm high) on 
the line between the photographs.

 2. Position your forehead directly on top of the card. The index card forces your left eye 
to focus on the left photograph and your right eye to focus on the right photograph.

Figure 2.2 Stereo pair from coastal British Columbia captured in 1937. A printable version is 
available from the book website in the StereoPairs folder (see Site 1)

J.L. Morgan et al.
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 3. Concentrating your vision (and “relaxing” your focus), imagine bringing the two 
images together so they align in the middle of your view. With some patience, 
hopefully the image will “pop” for you at some point, giving you a deep view of 
the terrain of the valley.

 4. It may also be helpful to try and focus your eyes “through” or “past” the images and 
then pick a feature (such as the river), and attempt to bring it together into focus.

 5. Remember, only the area of photo overlap will be visible in 3-D. You will also 
see the outer parts of the two images (but blurry and not in 3-D) on either side.

 6. This may not work for everyone, so move on after trying for a few minutes.

Viewing stereo pairs in 3-D without a stereoscope requires practice and patience, 
but once your skills become more advanced you will find it much easier to achieve 
stereovision. You might also wish to try again at the end of the lab after your eyes rest.

Modern aerial photography is commonly captured in color which provides more 
information than panchromatic (black and white) historic photographs, particu-
larly for species classification and assessment of vegetation health. Conventionally, 
most aerial photographs were captured with a film-based camera and then converted 
into digital format via scanning (Wolf and Dewitt 2000). However, a recent shift 
towards digital cameras has aided instantaneous capture of photographs in digital 
format with integration of geographic positional system (GPS) data. Unmanned 
aerial vehicles (UAVs) or “drones” are providing novel opportunities for capturing 
high resolution digital photography in ways that link extremely well with spatial 
ecological questions (Getzin et al. 2014) and connect well with other monitoring 
approaches such as satellite imagery, fieldwork, and citizen science (Turner 2014).

Next, you will examine aerial photographs over two time periods and explore 
how different methods of analysis can be used to extract a diversity of information 
useful in answering important landscape ecological questions.

 Part 2. Exploring Manual Photointerpretation

As much an art as a science, manual interpretation has been the primary technique 
used to derive ecological information from aerial photographs for eight decades 
(Morgan et al. 2010). While techniques have evolved greatly, from the use of plastic 
overlays to complex computer software, the basic approach remains similar (Avery 
and Berlin 1992).

First, the process of polygon delineation creates a series of polygons on an 
image (perhaps drawn “freehand”) in order to delineate homogeneous areas (or 
patches) with similar properties. In this lab, we will be focusing on forest patches 
(or forest stands), areas which are relatively homogenous with respect to tree size 
and species mix. Forest polygons are routinely delineated for inventory of timber, 
wildlife habitat, and other features of interest to management and research.

Second, the characteristics within each polygon (e.g., dominant species or dis-
turbance type) are interpreted and a general classification is assigned. Classification 
is based on convergence of evidence, meaning the interpreter uses a variety of 
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characteristics on the photograph to identify features on the ground (see Table 2.1). 
In addition to what the interpreter can extract visually, general knowledge of the 
area as well as on-the-ground experience with the local habitats and ecosystems 
contributes greatly to the interpretive process.

EXERCISE 2: Manual Classification of Contemporary Forests

The purpose of Exercises 2 and 3 is to gain a general understanding and apprecia-
tion for the basic approach used by interpreters to analyze aerial photographs when 
creating forest cover maps. This exercise requires the use of colored pens and 
printed copies of the aerial photographs from the OrthoPhotos folder.

The imagery you will analyze was assembled as part of a long-term ecological 
research project in Clayoquot Sound, British Columbia, Canada, near Tofino, BC 
(Gergel et al. 2007; Morgan and Gergel 2013; Thompson and Gergel 2008). The 
region has changed greatly due to decades of harvest (Figure 2.3). Extensive restora-
tion projects are currently underway in the area with a primary goal of restoring 
riparian forests and fish habitats. Increasing interest in spiritual and aesthetic values 
of these forests also supports a tourism economy. Dominant tree species can reach 
hundreds of years in age. Viewing the broader region in the 1970s shows the patterns 
of forest harvest (Figure 2.3). Using a much smaller spatial extent, you will examine 
 forest cover change in the area using more contemporary imagery as well as histori-
cal data from several decades prior.

Table 2.1 Eight primary characteristics used in manual interpretation of aerial photographs, 
adapted from Morgan et al. (2010)

Characteristic Definition Use in manual interpretation

Tone/Color Relative brightness or hue of pixels Natural and anthropogenic feature 
identification

Size Area (or number of pixels) of a 
feature or patch

Vegetation age and structure, habitat 
suitability, urban features/land use

Shape Relative complexity of a feature/patch 
border or edge

Identification of natural (irregular 
shapes) and anthropogenic (geometric 
shapes) features

Texture Frequency of change in tone among 
pixels; smoothness or roughness

Vegetation identification, biodiversity 
estimates, surface properties of a 
feature/patch

Pattern Spatial arrangement and repetition of 
features or patches across an area

Land use, disturbance, habitat 
suitability, landscape structure

Shadow Dark or “shadow” pixels caused by 
difference in elevation of a feature 
relative to surroundings

Feature identification and orientation

Site Environmental conditions of the 
delineated feature/patch

Microclimate, species, local habitat 
suitability

Context Conditions adjacent to, or 
surrounding, a feature or patch

Land use

J.L. Morgan et al.
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Working as small teams (or groups of two) you will start by classifying the con-
temporary (circa 1996) photographs of the Kennedy Lake, British Columbia using 
the categories described in Table 2.2 and Figure 2.4. The area of this modern ortho-
mosaic is 6.85 km2. Read the series of steps (1–6) below, before you begin.

 1. Within the folder entitled OrthoPhotos, print hard copy of the image entitled 
Modern.

 2. As a first step, use a colored pen to delineate the most obviously disturbed 
patches. These areas might include disturbances such as roads and recently 
logged areas. You may also find it helpful to refer to Table 2.1 to remind yourself 
of the generally useful characteristics for photointerpretation.

 3. Using your marker, delineate all polygons (patches) which appear visually 
similar.

 4. Next, carefully examine Table 2.2 and its accompanying visual in Figure 2.4. 
Together they explain and illustrate some basic forest types found in the region.

 5. Next, assign a class to each polygon. Try to discriminate late seral and second-
growth forest patches. Late seral patches refer to older forest stands which have 
never been harvested. Second-growth stands have younger smaller trees.

 6. The above exercise should take no more than 25–30 min. You will need to exer-
cise your own judgment and make a surprising number of decisions and “rules” 
as you complete this task—so take good notes of any decisions you make along 
the way.

(NOTE: Keep in mind variation is common even amongst trained, experienced 
interpreters.)

Figure 2.3 Regional view of the Clayoquot Sound landscape near Tofino and Ucluelet, British 
Columbia, surrounding the smaller area you will be examining with more recent (1990s) and his-
torical (1930s) photographs. Here, an orthophoto has been created demonstrating landscape condi-
tion in the 70s/80s

2 Historical Aerial Photography for Landscape Analysis
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Once you have completed the above steps, summarize your data as suggested below:

 1. Complete Table 2.3 using the row labeled Your Team’s Result. Remember that 
depending on the goals of a given project, second growth may be considered 
“disturbed” forest. Also, you will need to visually estimate % Landscape 
Disturbance.

 2. Compile results on the chalkboard (in a table similar to Table 2.3), so that the 
results from all teams are available to the entire classroom.

 3. Calculate the mean and standard deviation for the classroom and enter in 
Table 2.3.

 4. Only when your interpretation is complete, examine the results of an interpreta-
tion performed by a professionally trained interpreter located in a folder entitled 
Modern Interpretation.

 5. Tally results from the Professional Interpreter in Table 2.3.

Table 2.2 Basic classification scheme for modern aerial photographs in coastal BC

Class Description

Water • dark grey/black or light grey/white color

• smooth or “flat” appearance

• possibly rippled texture

• rivers with linear shape

• lakes with round/oblique shape

Roads • distinct linear shapes

• bright (white) in tone

• often adjacent to (or within) harvested areas

Recently Logged • lighter grey/white color

• irregular shapes

• sharp, well-defined borders

• often adjacent to or enveloping roads

Late Seral Western 
Redcedar

•  trees are light grey in color (the brightest conifer) but patches are 
dark due to open distribution of trees

• rough texture

• open distribution of trees

• patch edges often occurring as gradients

Late Seral Western 
Hemlock

• lighter grey color

• smooth texture

• small patches with indistinct edges

Second Growth • medium grey color

• smooth/fine texture

• smaller, inconspicuous tree crowns

• often irregular shapes with fairly well-defined borders

See Figure 2.4 for examples. This classification scheme can be modified by teams as they see fit. 
The simplest features to interpret are general classes such as water, forest, roads, and recently 
logged areas. Forested areas can further be delineated into patches (or stands) based on the domi-
nant species, age, or other forest characteristics

J.L. Morgan et al.
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Figure 2.4 Example images for interpretation of modern aerial photographs. Refer to classifica-
tion scheme in Table 2.2 for criteria to assist your interpretation

2 Historical Aerial Photography for Landscape Analysis
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Q1  Explain some of the easier aspects of manual interpretation and also some of 
the challenges you encountered when using this technique. Were you forced to 
make some key decisions and assumptions? Explain.

Q2  What are the major differences between your team’s interpretation and that of 
the professional interpreter? What are the similarities?

Q3  How do the results of the professional interpreter compare to the average 
 classroom results? What are some potential reasons for the similarities and 
differences?

Q4  Considering the standard deviation of the results (Table 2.3), what do you 
notice about the variability of this technique? Which measures are most and 
least variable (# classes, # patches, % disturbed)? What might be some reasons 
for this?

EXERCISE 3: Reconstruction of Historical Forests

Photographs can also be defined based on their geometry as either vertical (cap-
tured parallel to the ground) or oblique (captured at an angle). Oblique photographs 
captured from airborne cameras or high points on the landscape (such as mountain 
peaks) can predate vertical aerial photographs by several decades. However, analy-
sis techniques for oblique photos are not nearly as well developed due to the extreme 
difficulty in systematically extracting information from such photographs. Historical 
photos, in general, can be challenging to use but do provide some unparalleled 
advantages for landscape analyses (Morgan et al. 2010; Morgan and Gergel 2013; 
Jackson et al. 2016; Nyssen et al. 2016).

For the next section of the lab, we are fortunate to take advantage of historical 
vertical photos which have been orthorectified to help correct for distortion and ter-

Table 2.3 Summary of results for modern aerial photograph interpretations

Modern
Number of Classes 
Identified

Total Number 
of Patches

% of Patches 
Disturbed

% of Landscape 
Disturbed

Your Team’s  
Results

Mean for  
Classroom

Std Deviation 
for Classroom

Professional 
Interpreter

J.L. Morgan et al.
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rain. Here, you will conduct a manual classification at the identical location exam-
ined in Exercise 2 (also 6.85 km2) using historical photographs from 1937.

 1. Utilize a printed version of the image entitled Historical in the OrthoPhotos 
folder.

 2. Classify this image using slightly different categories, as explained in Table 2.4 
and shown in Figure 2.5.

 3. Using the same general approach as for the modern imagery, fill in the required 
information for Your Team’s Results in Table 2.5 based on your interpretation 
of the historical imagery.

 4. Share your results (on the chalkboard) with the entire classroom.
 5. Calculate the mean and standard deviation for the combined classroom results 

and enter in Table 2.5.

Q5  Again, only when your interpretation is complete, refer to the interpretations by 
trained interpreters within the Historical Interpretation folder and complete the 
last row of Table 2.5. Discuss the major similarities and differences between the 
interpretation of your team, the entire class, and the professional interpreter.

Q6  What challenges did you encounter when using this technique (manual inter-
pretation) on the historic photographs? How did the process compare to the 
modern imagery?

Table 2.4 Basic classification scheme for historical aerial photographs in coastal BC

Class Description

Water/Wetland • dark grey/black or light grey color

• smooth texture or “flat” appearance

• linear or round/oblique shape

Low Productivity Western Red Cedar • light grey color

• patchy or rough texture

• open distribution of trees

High Productivity Western Red Cedar • dark grey color

• coarse texture

• individual tree crowns may be visible

• often located in floodplains

Low Productivity Western Hemlock • light grey color

• smooth texture

• often in smaller patches

High Productivity Western Hemlock • medium grey color

• smooth texture

• small patches

• often located in floodplains

2 Historical Aerial Photography for Landscape Analysis
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Figure 2.5 Examples of a basic classification scheme for interpretation of historic aerial 
 photographs showing some subtle differences between historic forest stands of different species 
composition. Also see accompanying description in Table 2.4

Table 2.5 Summary of results for historical aerial photograph interpretations

Historic # Classes
# of 
Patches

% Patches 
Disturbed

% Landscape 
Disturbed

Your Team’s Results

Mean for Classroom

Std Deviation for Classroom

Professional Interpreter

Q7  Which of the eight characteristics of manual interpretation (Table 2.1) were 
most useful in guiding your interpretation? Which of the characteristics would 
be the most useful to track within the context of management?

J.L. Morgan et al.
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 Q8  Considering both Tables 2.3 and 2.5, what do you notice about the changes in 
the % of disturbed patches and % landscape disturbed between the two time 
periods? What are the strengths and limitations of such information for exam-
ining long-term variability in disturbances?

 Q9  Has heterogeneity changed over time in this landscape? How would you quan-
tify heterogeneity in order to answer this question? Does your answer change 
when you consider “within-patch” heterogeneity as opposed to landscape het-
erogeneity viewed “among” different patches?

Q10  Are the answers to the two previous questions changed greatly by the assump-
tions you (and other teams) made? Describe how and why.

 Part 3. Additional Considerations for Improving Aerial  
Photo Analysis

 Impact of Errors

Despite the utility of vertical aerial photographs for environmental analysis, errors 
can hinder interpretation and analysis (Cohen et al. 1996; Tuominen and Pekkarinen 
2005). Geometric errors refer to positional inaccuracies which can impact both the 
perceived location of features as well as the size of features on a photograph (Paine 
and Kiser 2003; Wolf and Dewitt 2000). Relief displacement occurs on landscapes 
with high topographic variability and causes areas closer to the camera lens to appear 
larger than they actually are, thus misrepresenting the size of features. Before most 
aerial photographs can be utilized within digital applications (such as a GIS), they 
must be orthorectified to correct for major geometric errors and provide photographs 
with an appropriate spatial reference. Orthorectification essentially refers to the 
process by which vertical map coordinates (x, y, and z) are assigned to the photo-
graph to accurately represent distances, angles, and areas (Lillesand et al. 2004). The 
images you used in Part 1 were stereo pairs (essentially raw imagery) whereas the 
imagery in Part 2 were orthorectified photographs. Radiometric errors refer to 
incorrect representation of tone/color on a photograph (Jensen 2000) and can some-
times be addressed by adjusting the contrast of the photograph.

Furthermore, errors can arise from the interpretation process. Interpretation 
errors can include positional error (errors in the location and placement of poly-
gons), as well as classification error (incorrect assignment of classes). With rela-
tively recent imagery, one can assess the accuracy of a classification through ground 
verification (or ground-truthing) and collect the data needed to conduct a formal 
accuracy assessment. When using historic imagery, however, such ground verifica-
tion is often challenging, if not impossible. As an alternative to ground verification 
of historic imagery, we can examine uncertainty by asking a professional photoin-
terpreter to quantify their certainty about their classification results, which we 
examine next.

2 Historical Aerial Photography for Landscape Analysis
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EXERCISE 4: Uncertainty in Classification

 1. Examine the images in the folder entitled Uncertainty. Polygons labeled 85, 90, 
or 100 represent those where the interpreter was confident (or highly certain) of 
their classification.

 2. Identify the areas deemed less certain by the professional interpreter. Note any 
perceptible characteristics or peculiarities of these polygons.

Q11  Do these “uncertain” areas coincide with any of the areas you found trouble 
interpreting? Why do you think such areas were hard to interpret?

Q12  Misclassification rates for forest inventories derived from manual interpreta-
tion of aerial photography can reach as high as 60% (Thompson et al. 2007). 
As a team, brainstorm about some potential implications of, and solutions for, 
a high rate of map misclassification for resource management, conservation, 
and/or restoration. Prepare to share your answers with the entire class. If your 
instructor gives you additional time, read Thompson et al. 2007 and/or Gergel 
et al. 2007 for ideas.

Historic Harvest Patterns and Topography

The fundamental influence of terrain (topographic relief and landscape position) on 
ecological processes has long been appreciated. Despite the wealth of information 
obtained solely from visual (tonal, textural) characteristics of aerial photographs, 
additional insights regarding landscape disturbance patterns can be obtained by 
accounting for topography using the three-dimensional perspective obtained from 
stereoscopic photos. Such 3-D information can greatly help improve the process of 
interpretation.

EXERCISE 5: Benefits of Terrain

For this exercise, you will revisit your interpretations from previous exercises 
regarding forest harvest patterns. The purpose of this exercise is to understand how 
the inclusion of topography and terrain information can be key for understanding 
disturbance patterns across a landscape.

 1. Familiarize yourself with the topographic data in the folder entitled Terrain.
 2. Use the classification scheme outlined in Table 2.6 along with the topographic 

images, and try to identify terrain classes on your image. (This classification 
scheme can be applied to both the historic and the modern aerial photographs)

Q13  Can you identify any new features due to the inclusion of topography? What 
features now become obvious or more easily identified? Are there any changes 
you would make to the borders of your earlier interpretations based on these 
terrain classes?

J.L. Morgan et al.
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EXERCISE 6: Forest Productivity in Historical Forests

Tree height is an important characteristic used in management because not only is it 
associated with the general productivity of forest stands but it also influences forest 
structure, total biomass, potential wildlife habitat and, of course, timber. Well-
trained interpreters can estimate tree height for a forest stand using stereo pairs. 
Most often, interpreters will assign an average tree height value within a homoge-
neous polygon. Productivity values can also be assigned to polygons by considering 
a combination of characteristics (in addition to tree height) such as soil moisture, 
aspect (exposure to sun), and slope.

 1. Examine the contents of the folder entitled Historical Tree Heights & Harvest 
Patterns which includes photo-interpreted maps of historic productivity and tree 
height. Familiarize yourself with these images.

 2. Using the historic tree height and historic productivity maps, determine the 
number of polygons with tree heights exceeding 30 m, as well as the number of 
polygons with productivity levels of “good” or “very good.” Enter the total num-
ber of each in Table 2.7.

 3. Compare the locations of historic polygons with tall tree heights and high pro-
ductivity to the same locations in the modern photograph. Using the modern 
photograph (and your modern interpretation), estimate how many of these his-
toric polygons have been logged. Enter your results in the final column of 
Table 2.7.

 4. If you find step 3 challenging, examine the file Logging providing an interpreta-
tion of logging (based on the modern photo) located in the same folder.

Table 2.6 Topographic classification scheme adapted from the Vegetation Resources Inventory 
Photo Interpretation Procedures (Province of British Columbia 2002)

Class Description

Upper Slope •  Upper portion of a hillslope including the crest or ridge of the hill/mountain
• This feature is usually convex

Middle Slope • Area of a slope with a straight profile
• Located in between the upper and lower slope features

Lower Slope • Bottom portion of a hill
•  Usually concave and characterized by an abrupt decrease in the gradient 

of the hill’s slope

Flat •  Area with a relatively flat/horizontal surface profile not adjacent to a hill 
base

Wetland/Water • Area with visible water features
• Usually found in areas at the lowest relative elevation
•  Wetlands are often characterized by a depression (an area that is concave 

in all directions)
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Q14 What trends in logging patterns do you notice from the results in Table 2.7?

Q15  Consider some potential ecological (or other) consequences of these patterns 
of historic harvest. Explain two potential implications for management.

Q16  Discuss how your results are influenced by the uncertainty maps from Exercise 
4. Are you more or less confident of your results and interpretation after incor-
porating the uncertainty maps?

SYNTHE SIS

Q17  Consider a landscape you know well. Perhaps it is close to your home or where 
you have done research. Devise an interesting question for this area utilizing 
historical aerial photography. Explain why your question is important and 
briefly explain your expected results (your proposed hypotheses). Explain how 
aerial photographs (and any auxiliary datasets) would be used in the project.

REFERENCES AND RECOMMENDED READINGS1
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1 NOTE: An asterisk preceding the entry indicates that it is a suggested reading.

Table 2.7 Summary of results for historic forest productivity and subsequent logging patterns 
according to topography

Topographic 
Class

Historic productivity Subsequent harvest

# Polygons # Polygons # Polygons # Polygons

Tree heights 
>30 m

Good or very 
good

(from column 1) 
logged

(from column 2) 
logged

Upper Slope

Middle Slope

Lower Slope

Flat

Wetland or Water

Topographic classes are explained more fully in Table 2.6
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Chapter 3
Citizen Science for Assessing Landscape 
Change

Jeffrey A. Cardille and Michelle M. Jackson

OBJECTIVES

Citizen science is increasingly recognized as a powerful tool for addressing ecologi-
cal problems across large areas. Although not a new phenomenon, certain types of 
citizen science rely on advanced web-based technology not previously available. 
“Crowdsourcing” refers to a type of citizen science in which large data-collection 
tasks are allocated to volunteers using the Internet. Such tasks may require minimal 
time or effort on the part of the volunteer but—when combined with the efforts of 
many others—can produce enormous datasets that are extremely useful in research 
and monitoring. By encouraging public participation from people who may not be 
experts in a given scientific subject, crowdsourcing citizen science aims to gather 
and collate useful scientific information from a larger number of individuals than 
would otherwise be feasible. In this lab, you will participate in a crowdsourcing 
project and explore some of the basic components of citizen science as it can be 
applied to landscape ecology. This lab is designed to enable students to:

 1. Learn about citizen science and its application in landscape ecology;
 2. Explore the use of cloud-based forms and spreadsheets for tracking and sum-

marizing results from hundreds of citizen scientists;
 3. Become familiar with using Google Earth for scientific purposes; and
 4. Gain experience interpreting existing land-cover classifications and aerial pho-

tography in order to contrast historic and current land use/land cover.
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Working independently, you will assess land-use/land-cover (LU/LC) change 
over the past 50 years in the Montérégie region of Quebec, Canada. In Part 1, you 
will familiarize yourself with the region by exploring aerial photos and land-cover 
classifications from previous decades using Google Earth. In Part 2, for a set of 
randomly selected points within the study area, you will compare land use and land 
cover at those points. As you work, your individual efforts will be pooled with the 
work of your classmates today and from earlier lab sessions at other institutions 
around the world. You’ll need a web browser and the Google Earth software, along 
with an Internet connection, to complete the lab. Because the web interface associ-
ated with this lab will be continually updated and adapted over time, please continue 
with the lab online, starting here:

http://goo.gl/FQdwXk

J.A. Cardille and M.M. Jackson
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This module builds on the previous module in that it assumes a basic understanding 
of how maps are created and used to represent landscapes. First, Chapter 4 intro-
duces you to pattern analysis using FRAGSTATS software, the long-standing work-
horse of pattern analysis. This hugely popular lab from the first edition still combines 
hand calculations with computer analyses but has been adapted to incorporate the 
latest version of the software. Another fundamental challenge in landscape ecology 
is understanding patterns at multiple scales. Chapter 5 introduces the use of semi-
variograms for scale detection and for relating known patterns to measures of spatial 
autocorrelation. These first two labs are helpful prerequisites to several other chap-
ters. Chapter 6 presents the concepts and tools for creating and using neutral land-
scape models. Exposure to QRule software helps underscore the impact of different 
patch-definition rules on landscape metrics and the appropriate use of landscape 
expectations that are spatially neutral. Chapter 7 is an important new addition to the 
book, providing guidance for the eternally vexing question of “What constitutes a 
significant difference in landscape pattern?” Here, students will learn how to assign 
statistical significance when comparing pattern metrics among landscapes.

Part II
Fundamentals of Quantifying  

Landscape Pattern

http://dx.doi.org/10.1007/978-1-4939-6374-4_4
http://dx.doi.org/10.1007/978-1-4939-6374-4_5
http://dx.doi.org/10.1007/978-1-4939-6374-4_7
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Chapter 4
Understanding Landscape Metrics

Jeffrey A. Cardille and Monica G. Turner

OBJECTIVES

An extensive set of landscape metrics exists to quantify spatial patterns in heteroge-
neous landscapes. Developers and users of these metrics typically seek to objec-
tively describe landscapes that humans assess subjectively as, for example, “clumpy,” 
“dispersed,” “random,” “diverse,” “fragmented,” or “connected.” Because the quan-
tification of pattern is fundamental to many of the relationships we seek to under-
stand in landscape ecology, a basic familiarity with the most commonly used metrics 
is extremely important. Several software programs evaluate maps quickly and 
cheaply, but there are no absolute rules governing the proper use of landscape met-
rics. To help foster the appropriate use of landscape metrics, in this lab students will:

 1. Become familiar with several commonly used metrics of landscape pattern;
 2. Distinguish metrics that describe landscape composition from those that describe 

spatial configuration;
 3. Understand some of the factors that influence the selection and interpretation of 

landscape metrics;
 4. Gain experience with landscape pattern analysis using Fragstats; and
 5. Observe the correlation structure among some commonly used landscape 

metrics.
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This lab explores the calculation and interpretation of metrics commonly used in 
landscape ecology. Emphasis is placed on the understanding gained from actually 
calculating select metrics by hand rather than only using a metric-calculation package. 
In Parts 1 and 2, you will manually calculate several landscape metrics for a small 
landscape to ensure that you understand their underlying mathematics. Although the 
landscapes used for the hand calculations are much smaller than those typically input 
to metric-calculation software packages, the concepts and equations learned are the 
same as those used for full-sized images. Once you have a basic understanding of 
several metrics, a section using Fragstats (Part 3), the most widely used analysis pro-
gram McGarigal and Marks (1993) and larger landscape images (Part 4) will help you 
investigate the behavior of landscape metrics in more realistic settings. In Part 5, you 
explore the capabilities and limits of using landscape metrics for real-world landscape 
change at different time periods. Parts 1 and 2 can be completed using only pen and 
paper (and perhaps a calculator). Parts 3–5 require a computer with the latest version 
of Fragstats. All files needed to complete the lab are accessible online via links you can 
find on the website for this book.

 INTRODUCTION

The quantification of landscape pattern has received considerable attention since the 
early 1980s, in terms of both development and application (Romme and Knight 
1982; O’Neill et al. 1988; Turner et al. 1989; Baker and Cai 1992; Wickham and 
Norton 1994; Haines-Young and Chopping 1996; Gustafson 1998; Cardille and 
Lambois 2010). Along with terrestrial landscapes, metrics are also applied in 
aquatic systems and marine “seascapes” (e.g., Teixido et al. 2007; Boström et al. 
2011). Several of the most commonly used landscape metrics were originally 
derived from percolation theory, fractal geometry, and information theory (the same 
branch of mathematics that led to the development of species diversity indices). The 
increased availability of spatial data, particularly over the past two decades, has also 
presented myriad opportunities for the development, testing, and application of 
landscape metrics. To a large degree, metric development has stabilized, caveats 
about proper use and interpretation are understood (e.g., Li and Wu 2004; Corry and 
Nassauer 2005; Turner 2005; Cushman et al. 2008), and newly developed methods 
have improved statistical interpretations of metric values (e.g., Fortin et al. 2003; 
Remmel and Csillag 2003).

Why are methods for describing and quantifying spatial pattern such necessary 
tools in landscape ecology? Because landscape ecology emphasizes the interac-
tions among spatial patterns and ecological processes, one needs to understand 
and quantify the landscape pattern in order to relate it to a process. Practical appli-
cations of pattern quantification include describing how a landscape has changed 
through time; making future predictions regarding landscape change; determining 
whether patterns on two or more landscapes differ from one another, and in what 
ways; evaluating alternative land management strategies in terms of the landscape 
patterns that may result; and determining whether a particular spatial pattern is 
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conducive to movement by a particular organism, the spread of disturbance, or the 
redistribution of nutrients. In all of these cases, the calculation of landscape met-
rics is necessary to rigorously describe landscape patterns. However, relating these 
metrics of pattern to dynamic ecological processes still remains an area in need of 
further research.

In this lab, you will examine and manually calculate several commonly used 
landscape metrics for a small landscape to ensure that you understand their under-
lying mathematics (Parts 1 and 2). Then, once you have a basic understanding of 
several metrics, two computer-based exercises (Parts 3 and 4) are provided to 
allow you to calculate metrics using Fragstats and larger landscape images. 
Finally (Part 5), you explore the capabilities and limits of using landscape metrics 
for the same real-world landscape at different time periods. During the course of 
the lab, you will calculate a wide range of metrics of landscape composition and 
configuration, including Proportion, Dominance, Shannon Evenness, Number of 
patches, Mean Patch Size, Edge:area ratios, Probability of adjacency, Contagion, 
Patch Density, Edge Density, Landscape Shape Index, Largest Patch Index, and 
Patch Richness.

 Part 1. Metrics of Landscape Composition

The simplest landscape metrics focus on the composition of a landscape (e.g., which 
categories are present and how much of the categories there are), ignoring the spe-
cific spatial arrangement of the categories on the landscape. In this section, you will 
examine three metrics designed to assess the composition of a landscape: (1) the 
proportion of the landscape occupied by each cover type, (2) Dominance, and (3) 
Shannon Evenness.

Proportion (pi) of the landscape occupied by the ith cover type is the most funda-
mental metric and is calculated as follows:

 
p

i
i =

Total number of cellsof category

Total number of cells in the landdscape  

Proportions of different landscape types have a strong influence on other aspects 
of pattern, such as patch size or length of edge in the landscape (Gardner et al. 
1987; Gustafson and Parker 1992), and pi values are used in the calculation of 
many other metrics. Several metrics derived from information theory use the pi 
values of all cover types to compute one value that describes an entire landscape. 
First developed by Shannon (1948), information theoretic metrics were first 
applied to landscape analyses by Romme (1982) to describe changes in the area 
occupied by forests of varying successional stage through time in a watershed in 
Yellowstone National Park, Wyoming. Romme reasoned that indices used to 
quantify species diversity in different communities could be modified and applied 
to describe the diversity of landscapes. Dominance and Shannon Evenness are two 
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such metrics that characterize how evenly the proportions of cover types occur 
within a landscape.

Dominance (D) (O’Neill et al. 1988) can be calculated as:

 

D

S p p
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where S is the number of cover types, pi is the proportion of the ith cover type, and 
ln is the natural log function. The maximum value of this index, given S cover 
types, is ln(S); dividing by the maximum value scales the index to range between 
0 and 1. Values of D near 1 indicate a landscape dominated by one or few cover 
types, while values near 0 indicate that the proportions of each cover type are 
nearly equal.

Shannon Evenness Index (SHEI) (Pielou 1975) can be calculated as:

 

SHEI
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where S is the number of cover types, pi is the proportion of the ith cover type, and 
ln is the natural log function. Values for SHEI range between 0 and 1; values near 1 
indicate that the proportions of each cover type are nearly equal; values near 0 indi-
cate a landscape dominated by one or few cover types.

A very important detail to note in the formulations of information theoretic met-
rics is whether or not a particular metric has been normalized to a standard scale. 
Some early applications of Dominance and Shannon Evenness were not normalized 
(e.g., O’Neill et al. 1988). The non-normalized forms of these metrics are very sen-
sitive to the number of cover types S in the landscapes, and thus comparisons among 
landscapes that differed in S were problematic. Normalizing a metric ensures that its 
values fall within a standardized range, such as from 0 to 1 (and not from 0 to 157, 
for example!). With D and SHEI, the normalization involves dividing the numerator 
by the maximum possible value of the index (ln S), as shown above.

CALCULATIONS

To understand these metrics and calculate them by hand within a reasonable time 
frame, you will calculate the metrics for two small hypothetical landscapes repre-
sented as 10 × 10 grids (Figure 4.1). It may be useful to print paper copies of these 
small landscapes for your hand calculations.
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Metrics of Landscape Composition in an Early-Settlement 
Landscape

An invented “early-settlement” landscape is shown on the left in Figure 4.1. This 
image is intended to represent an area that was previously fully forested, but has lost 
some forest to agricultural and urban uses. The landscape is composed of a 10 × 10 
grid with each grid cell representing an area of 1 km2 (1000 m × 1000 m; 106 m2).

Calculation 1: Calculate the proportions occupied by each of the three land covers 
in the early-settlement landscape. Record the values in Table 4.1.

Figure 4.1 Hypothetical early-settlement and post-settlement landscape classifications

Table 4.1 Metrics of landscape composition in an early-settlement landscape

Proportion occupied by: Result

  Forested

  Agricultural

  Urban

Dominance

Shannon Evenness Index
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Calculation 5: Calculate Dominance for the post-settlement landscape and record 
it in Table 4.2.

Calculation 6: Calculate Shannon Evenness for the post-settlement landscape and 
record it in Table 4.2.

Given the answers you obtained for both the early- and post-settlement landscapes, 
consider the following questions:

Q1  How would you interpret/describe the changes in this landscape between the 
two time periods?

Q2  Explain the relationship between Dominance and Shannon Evenness. If you 
were conducting an analysis of a real landscape, would you report both D and 
SHEI? Why or why not?

Q3  Use your calculator to perform some additional calculations of D assuming the 
proportions listed in Table 4.3.

Calculation 2: Calculate Dominance for the early-settlement landscape and record 
in Table 4.1.

Calculation 3: Calculate Shannon Evenness for the early-settlement landscape and 
record in Table 4.1.

Metrics of Landscape Composition in a Post-settlement 
Landscape

A “post-settlement” landscape is shown on the right in Figure 4.1. This image rep-
resents the exact same area as the early-settlement landscape, but much later in 
time. Note that more of the forest has been converted to agricultural use. Additionally, 
some of the agricultural and forest land in the early- settlement image has been con-
verted to urban use, while some of the early- settlement agricultural land has been 
reverted to forest in the post-settlement image.

Calculation 4: Calculate the proportions occupied by each of the three land cover 
types in the post-settlement landscape. Record the values in Table 4.2.

Table 4.2 Metrics of landscape composition in a post-settlement landscape

Proportion occupied by: Result

  Forested

  Agricultural

  Urban

Dominance

Shannon Evenness Index
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Table 4.3 Proportion of the landscape occupied by three different cover types in four different 
landscapes

Landscape pForested pAgricultural pUrban Dominance

W 0.10 0.80 0.10

X 0.80 0.10 0.10

Y 0.65 0.20 0.15

Z 0.15 0.20 0.65

Q4  Which of these hypothetical landscapes might be considered “similar” when 
only comparing D?

Q5  Under what conditions could interpretation of Dominance (or other similar 
metrics) be problematic?

Q6  Considering your interpretation of the data in Table 4.3, what other types of 
information and/or metrics would be necessary to distinguish these landscapes?

SYNTHESIS QUESTIONS

Q7 Is there an upper and lower limit of S beyond which D and SHEI will not work?

Q8  To compare D or SHEI across two or more landscapes, does S need to be the 
same for each landscape in the comparison? Why or why not?

Q9  The developers of the normalized versions of these metrics chose to normalize 
them using the maximum possible number of cover types that could ever appear 
in a landscape. What are some other ways that a metrics could be normalized, 
and how might this change the results?

 Part 2. Metrics of Spatial Configuration

A variety of landscape metrics are sensitive to the specific spatial arrangement of 
different cover types on a landscape. In this section, we will consider four compo-
nents of landscape configuration: (1) patches, (2) edges, (3) probability of adja-
cency, and (4) contagion.

The total number of patches in a landscape results from first defining connected 
areas (i.e., patches or clusters) of each cover type i. Patches are commonly identified 
by using either of two rules for evaluating which cells belong to the same patch. 
A patch may be identified using the 4-neighbor rule, where two grid cells are con-
sidered to be part of the same patch only if they are of the same cover type and share 
a flat adjacency (i.e., horizontal or vertical) between them. Alternatively, the 
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8- neighbor rule specifies that two grid cells of the same cover type are to be 
 considered as part of the same patch if they are adjacent or diagonal neighbors. 
In reporting the number of patches (or any other patch-based characteristic) it is 
important to distinguish whether the calculation is for all patches of all cover types 
or whether it is only for patches of a certain cover type i. In addition to the total 
number, patches can be described in terms of their size (i.e., area) and edge:area 
ratio, which will be discussed later.

Mean Patch Size (MPS) is the arithmetic average size of each patch on the land-
scape or each patch of a given cover type. It is often calculated separately for each 
cover type as follows:

 
MPS = =

∑
k

m

kA

m
1

 

where m = the number of patches for which the mean is being computed and Ak = the 
area of the kth patch. The units of area are defined by the user and should always be 
specified.

Edge calculations provide a useful measure of how dissected a spatial pattern is and 
can be calculated in a variety of ways. An edge is shared by two grid cells of differ-
ent cover types when a side of one cell is adjacent to a side of the other cell. The 
4-neighbor rule is used for edge counting: diagonals are not used for this aspect of 
landscape configuration. The total number of edges in a landscape can be calculated 
by counting the edges between different cover types for the entire landscape. When 
considering the edges surrounding a given cover type, every edge in the landscape 
is counted once per cover type. As a result, an edge between a forest and cornfield 
will be counted once as part of forest edge and once as part of cornfield edge. Edges 
are sometimes considered with respect to the type of adjacency; in this case, a given 
forest-cornfield edge would be counted once.

Edge calculations are sometimes used to compute an edge:area ratio. Edges 
may be computed in a variety of ways for a given landscape. For example, the total 
linear edge in a landscape can be divided by the area of the landscape to provide a 
single edge:area estimate, or edge density. More useful, however, are computations 
of edge:area ratios by cover type or for individual patches.

Edge calculations are sensitive to several factors. Whether the actual borders of 
the landscape image are considered as edges influences both the edge counts and 
edge:area ratios. (NOTE: In this exercise, the landscape border will not be consid-
ered edge for your calculations) Computer programs may use slightly different 
algorithms for totaling edges. It is extremely important to be consistent in both 
algorithm and units within a set of analyses. Additionally, although edge counts are 
relatively simple to compute from a landscape map, they can be very sensitive to the 
grain of the map.
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CALCULATIONS

Metrics of Spatial Configuration in an Early-Settlement 
Landscape

Refer back to Figure 4.1. Recall that the early-settlement landscape is meant to 
represent an area which was formerly fully forested, but where some of the land has 
been converted for agricultural and urban use.

Calculation 7: Using the 4-neighbor rule, calculate the total number of patches for 
each cover type in the early-settlement landscape. Enter your results in Table 4.4.

Table 4.4 Number of patches and mean patch size (in grid cells) using the 4-neighbor rule for 
categories in the early-settlement landscape

Cover type Number of patches Mean patch size

Forested

Agricultural

Urban

Table 4.5 Number of edges and edge:area ratio for the early-settlement landscape

Cover type Number of edges Edge:area ratio

Forested

Agricultural

Urban

Calculation 8: Using the 4-neighbor rule, calculate the mean patch size for each 
cover type in the early-settlement landscape. Enter your results in Table 4.4.

Calculation 9: Calculate the number of edges for each category in the early-settle-
ment landscape of Figure 4.1. Be sure to count both horizontal and vertical edges 
between cover types. This count is done for cells (not patches), and you may find it 
useful to mark edges in pencil in your lab manual as you count. Do not count the 
borders of the map for this exercise. Enter your results in Table 4.5.

Calculation 10: Using the results from Calculation 9, compute the edge:area ratio 
for each cover type and enter into Table 4.5.

Q10  What characteristics of a landscape will influence the result you obtain for the 
number of patches and the average patch size?

4 Understanding Landscape Metrics



54

Probability of adjacency (qi, j) is the probability that a grid cell of cover type i is 
adjacent to a cell of cover type j. This metric is sensitive to the fine- scale spatial 
distribution of cover types and can be computed as:
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where ni,j = the number of adjacencies between grid cells of cover type i and cover 
type j, and ni = the total number of adjacencies for cover type i.

Probabilities of adjacency are often reported in an S x S matrix referred to as the 
Q matrix. Because they are probabilities, values for qi,j range from 0 to 1. High qi,j 
values indicate that the cells of cover type i have a high probability of being adja-
cent to cells of cover type j, while low qi,j values indicate a low probability. Values 
along the diagonals of the Q matrix (the qi,i values) are useful measures of the degree 
of clumping found within each cover type. High qi,i values indicate a highly aggre-
gated, clumpy cover type, and low qi,i values indicate that the cover type tends to 
occur in isolated, dispersed grid cells or small patches.

The calculation of probabilities of adjacency may be performed in only the hori-
zontal or only the vertical direction to detect directionality (referred to as anisot-
ropy) in a pattern. For example, imagine a landscape composed of alternating ridges 
and valleys oriented in a north south direction and in which forest cover occupies 
the ridges and agriculture occupies the valleys. The probabilities of adjacency 
would be different depending on whether you moved from north to south or from 
east to west across this landscape. In this lab, the horizontal and vertical values are 
averaged into a single measure of adjacency.

Contagion (C) (O’Neill et al. 1988; Li and Reynolds 1993, 1994) uses the Q matrix 
values to compute an index of the overall degree of clumping in the landscape. Just 
as D and SHEI used all pi values for all cover types to compute one metric, conta-
gion incorporates all qi,j values into one metric for the entire landscape. The 
Contagion metric is intended to capture relatively fine-scale differences in pattern 
that relate to the “texture” or “graininess” of the map. The equation is given by:
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where qi,j = the adjacency probabilities defined above, and Cmax = 2 * ln (S), which 
gives the maximum value of the index for a landscape with S cover types.

Values for Contagion range from 0 to 1. A high Contagion value indicates gener-
ally clumped patterns of landscape categories within the image, while values near 0 
indicate a landscape with a dispersed pattern of landscape categories. Note that 
Contagion can be computed differently if the qi,j probabilities are computed by 
another algorithm (Li and Reynolds 1993; Riitters et al. 1996). Because the 
Contagion metric is computationally intensive, for this exercise it would be tedious 
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Figure 4.2 Subset of the early-settlement landscape used for calculating the Contagion index

to determine this value by hand for even a relatively tiny landscape like the early-
settlement landscape. Thus, for illustration purposes, you will compute the 
Contagion value for only a subset of that landscape.

CALCULATIONS

Metrics of Spatial Configuration in an Early-Settlement 
Landscape (Continued)

Calculation 11: To begin calculating Contagion, use Figure 4.2 to calculate the 
proportions occupied by each of the three land cover types in the subset of the early-
settlement landscape. Record the values in Table 4.6.

Table 4.6 Proportion of the landscape occupied by three different 
cover types in the subset of the early-settlement landscape

Cover type Proportion (pi)

Forested

Agricultural

Urban
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Calculation 12: Count the adjacencies for all cover types for the subset of the early-
settlement landscape, as seen in Figure 4.2. Enter the results in Table 4.7. Do not 
count the borders of the map for this exercise. (HINT: If you mark each adjacency 
once as it is counted, you will mark 40 adjacencies)

Table 4.7 Adjacency counts for the subset of the early-settlement landscape

Category j:

Category i: Forested Agricultural Urban

Forested

Agricultural

Urban

Table 4.8 N matrix for the subset of the early-settlement landscape

Category j: Row total (ni)

Category i: Forested Agricultural Urban

Forested n1,1 n1,2 n1,3

Agricultural n2,1 n2,2 n2,3

Urban n3,1 n3,2 n3,3

Calculation 13: Note the values along the diagonal in Table 4.7. In effect, we have 
counted most, though not all, of the adjacencies twice. In particular, diagonal elements, 
which represent adjacencies between cells of the same type, have been counted only 
once. So that each adjacency is counted the same number of times, double the values 
from the diagonal elements of Table 4.7 and enter them in Table 4.8, the N matrix. For 
the non-diagonal elements of Table 4.8, use the same value seen in Table 4.7.

Calculation 14: Use the values of the N matrix (Table 4.8) to compute the elements 
of the Q matrix (Table 4.9).

Table 4.9 Q matrix for the subset of the early-settlement landscape

Category j:

Category i: Forested Agricultural Urban

Forested q1,1 q1,2 q1,3

Agricultural q2,1 q2,2 q2,3

Urban q3,1 q3,2 q3,3

Calculation 15: Calculate the Contagion value for the subset of the early- settlement 
landscape using the elements of the Q matrix.

The Contagion value for the subset of the early-settlement landscape is: ___________
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Q11  If you were considering a real landscape, do you think it would be reasonable, 
in general, to save computer time by calculating the Contagion value for only 
a subset? What characteristics of a real landscape might inhibit or encourage 
you to make your decision?

Q12  Imagine a landscape of large extent for which you couldn’t easily calculate 
this metric. If you could partition the landscape into tiles small enough to 
compute Contagion in each, could you combine the results in each tile to rep-
resent Contagion in the entire extent? What would be the conceptual and prac-
tical limits to this approach?

Q13  Suppose that you are given the task of describing how a landscape changed 
between two time periods, t1 and t2. The map of the first time period contains five 
cover types; the map from the second time period contains seven cover types 
because “forest” in t2 was mapped in more detail—as deciduous, coniferous, 
and mixed forest. How should you proceed with your comparison, and why?

SYNTHESIS

Q14  Two landscapes are the same size and both contain the same amount of a given 
cover type. Landscape A has four patches of that cover type, and Landscape B 
has 17 patches of the same cover type. Which of the landscapes will have the 
greater length of edge of that cover type?

Q15  What characteristics of the landscape appear to have influenced the Contagion 
value calculated in this section? How would you change the values of the grid 
cells to raise the Contagion value?

Q16  From your set of calculations, do you think after calculating a large number of 
metrics for a single landscape, additional metrics would provide little new 
information? How might you attempt to objectively determine an upper limit 
to the number of useful metrics?

 Part 3. Using Fragstats for Automated Landscape Metric 
Calculation for the Early- and Post-settlement Landscapes

In this section, you will use Fragstats (McGarigal et al. 2012) to analyze the landscapes 
you examined in Parts 1 and 2. Fragstats is available for free, computes a wide variety 
of metrics, is available in versions to analyze both raster and vector maps, and is prob-
ably the most widely used program for landscape pattern analysis. Fragstats can be run 
in a variety of ways, including from a graphical user interface as a stand-alone program, 
as a plug-in to ArcGIS, and from the command line. Information about Fragstats is 
available in the student material for the book, or can be provided by your instructor.
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 INPUT AND SETTINGS

Before calculating a given set of metrics, Fragstats requires settings for the suite of 
metrics it calculates for your image. Some of the major settings to consider and 
understand are given below. Each has an impact on how Fragstats interprets the 
landscape in its calculation of metric values.

• Grid cell size: The size of cells for each image is given in each of the calcula-
tions for this section.

• Diagonals in patch finding: You must specify in Fragstats whether to use the 
4-neighbor or 8-neighbor rule for finding patches.

• Scale of Analysis: Fragstats can output calculations at the landscape level (i.e., 
considering all the cover types together), class level (reported by each of the 
cover types in the map), and patch level (calculated for each patch). 

To complete these sections, we ask you to select the landscape-level and 
class-level metrics. In this section, we are not interested in knowing details about 
each patch, but instead are primarily interested in metrics that summarize the 
entire image. Although we will not directly use the information contained in the 
summaries of each landscape category, it is useful to note that some metrics can 
be calculated for each class.

 OUTPUT

Fragstats outputs information in several files. In this lab, we are concerned with the 
.land file, a text file that can be viewed with any text editor. Information about each 
landscape category is at the beginning of the file, and metrics for the entire land-
scape are at the end of the file. In these landscapes, Category 1 = Forested, Category 
2 = Agricultural, and Category 3 = Urban.

CALCULATIONS

You will input text files containing the land-cover categories for the early- and post-
settlement landscapes. You will then use Fragstats to specify your output file name 
and landscape metrics to calculate.

Calculation 16: Early-Settlement Landscape with the 4-Neighbor Rule

• Run Fragstats using the esett landscape file and the 4-neighbor rule. This is a 
10 × 10 landscape where one side of a cell represents 1000 m on the ground. Use 
early4 as the base for output file names. You might make a new folder to contain 
the results. You may choose which metrics to compute, but you should include 
several of the metrics you calculated by hand (e.g., number of patches, mean 
patch size, contagion, and Shannon evenness).
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• To verify that you are using Fragstats correctly and that your answers calculated 
by hand were correct, compare the calculations for the early- settlement land-
scape from the previous section. You should get the same answers (NOTE: 
Fragstats does not calculate Dominance).

Calculation 17: Early-Settlement Landscape with the 8-Neighbor Rule
Run Fragstats using the 8-neighbor rule for the early-settlement landscape. Again, 
use the esett landscape file. As the base for naming output files, enter early8.

Calculation 18: Post-settlement Landscape with the 4-Neighbor Rule
Run Fragstats using the psett landscape file. This is a 10 × 10 landscape where one side 
of a cell represents 1000 m on the ground. As the base for output files, enter post4.

Calculation 19: Post-settlement Landscape with the 8-Neighbor Rule
Run Fragstats using the 8-neighbor rule for the post-settlement landscape. Again, 
use the psett landscape file. As the base for output files, enter post8.

Q17  Organize the results obtained for the four runs (early- and post- settlement 
landscapes, 4- and 8-neighbor rules). Describe how the metrics are affected by 
the choice of 4- and 8-neighbor rules. Taken as a whole, how do the metrics 
indicate that this landscape has changed from the early-settlement to post-
settlement period?

 Part 4. Automated Landscape Metric Calculation for Real 
Landscapes and Interpretation of Multiple Metrics

In this section, we use Fragstats to compute landscape metrics for real landscapes. 
Calculate at least the following metrics with Fragstats for each of the maps described 
below. Use the 8-neighbor rule for each of the analyses.

• Contagion
• Patch Density (the average number of patches per 100 ha)
• Edge Density (an expression of edge:area relationships)
• Landscape Shape Index (a measure of shape complexity)
• Largest Patch Index (an indicator of connectivity)
• Patch Richness (the number of patch types)

 CALCULATIONS

Calculation 20: Madison, Wisconsin, USA
We present two classifications of the same satellite image produced by two different 
users of the same landscape processing software. Subjectivity inherent in the clas-
sification process inevitably produces differences among resultant maps. The two 
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landscapes are referred to mad1 and mad2. Each landscape has 575 rows and 800 
columns, and one side of a grid cell represents 30 m on the ground. Comparing the 
results of these analyses illustrates that differences or errors in classification will 
influence landscape metrics.

Calculation 21: New England Landscape #1 [Latitude = 40.71754, 
Longitude = −76.81646]
This landscape is referred to as x632y165s2 according to its index in the Metaland 
software (see Chapter 10). This landscape has 216 rows and 216 columns, and one 
side of a grid cell represents 30 m on the ground.

Calculation 22: New England Landscape #2 [Latitude = 40.77141, 
Longitude = −75.29400]
This landscape is referred to as x651y160s2 according to its index in the Metaland 
software. This landscape has 216 rows and 216 columns, and one side of a grid cell 
represents 30 m on the ground.

Calculation 23: New England Landscape #3 [Latitude = 41.32851, 
Longitude = −72.06994]
This landscape is referred to as x689y141s2 according to its index in the Metaland 
software. This landscape has 216 rows and 216 columns, and one side of a grid cell 
represents 30 m on the ground.

SYNTHESIS

Q18  Using your Fragstats results, plot the values of the metrics specified above to 
assess their relationships. For each pair of metrics, graph a scatter plot (metric 
a on the Y-axis, metric b on the X-axis); your plots will have five points, one 
for each landscape.

Q19  To compare metrics across the five landscapes, you can make a bar graph with 
metric values on the Y-axis and each landscape map on the X-axis. When looking 
at the maps and the metrics, which of the landscapes above appears to be the most 
fragmented, and which appears least fragmented? How did you determine this? 
Use the results of your quantitative analyses to support your interpretations.

Q20  How would the correlation among landscape metrics influence your choice of 
what to report in an analysis that describes landscape pattern or quantifies differ-
ences between two landscapes or changes in a single landscape through time?

Q21  What criteria would you use to select the “best” set of metrics to describe a 
landscape?
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 Part 5. Understanding Landscape Change Through Metrics

In this section, you will explore some of the challenges of using landscape metrics 
to assess landscape change through time. While it is easy to generate large amounts 
of data quantifying the landscape patterns of a given area, it is quite challenging to 
make credible comparisons across time periods. Data sets of the same area for two 
time periods are often produced with different classification techniques and philoso-
phies, which may make comparisons challenging, at least for some metrics.

You will draw on what you have learned in the previous sections: for example, 
interpreting and reflecting on the equations that are used to calculate landscape met-
rics; exploring how some landscape metrics respond principally to landscape com-
position, while others are more clearly responsive to a landscape’s configuration. 
You will study four landscapes from the National Land Cover Data Set (NLCD), 
a continental-scale land-cover assessment program using satellite data and ancillary 
information to track and update land-cover change and stability through time 
(Vogelmann et al. 2001; Homer et al. 2004; Jin et al. 2013). The landscapes are taken 
from 6.5 km × 6.5 km regions in New England, USA. For each landscape at multiple 
times, you will be given the land-cover images, and the values of a large number of 
landscape-level and class-level metrics from Fragstats runs.

After you have downloaded the data, investigate by viewing the images of the 
same landscapes at different times and by exploring the landscape metric data using 
the associated sandbox spreadsheet. The spreadsheet allows you to quickly collate 
the output from multiple runs of Fragstats.

 SYNTHESIS

Q22  What are some of the practical obstacles to comparing the landscapes from 
these two time periods? In your estimation, to what extent are differences in 
landscape metrics likely driven by differences in landscape data and data- 
processing approaches, rather than in true changes in the real world?

Q23  Choose two cover types and compare the class-level metrics in these land-
scapes across time periods. Are some land-cover classes more readily compa-
rable than others? If so, which ones?

Q24  According to the computed landscape metric values, which landscapes have 
changed the most between the two time periods? Which have changed the 
least? For your analyses, you should include both landscape-level and class-
level metrics, which may be more informative in answering particular ques-
tions than those that are computed for all cover types simultaneously.

Q25  Given your experience in this chapter, how well (or poorly) do landscape met-
ric values support your subjective assessment of land-cover change and stabil-
ity in these real-world landscapes?
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Chapter 5
Scale Detection Using Semivariograms 
and Autocorrelograms

Michael W. Palmer and Daniel J. McGlinn

OBJECTIVES

The evolution and ecology of all organisms are contingent on the complex variation 
seen in nature. Landscape ecology differs from most other branches of ecology in 
that it explicitly involves spatial variation. Therefore, one of the goals of landscape 
ecology is to describe spatial variation. The purpose of this exercise is to:

 1. Introduce two tools for describing this variation: semivariance and autocorrela-
tion; and

 2. Give students experience creating and interpreting semivariograms and 
auto  correlograms.

In this lab, you will collect field data from quadrats arranged along a transect (or 
alternatively, you will use supplied data). You will then calculate and graph semi-
variograms and autocorrelograms using a spreadsheet, and you will use these graphs 
to determine how spatial patterns vary as a function of scale in your system. For this 
lab, you will need access to a spreadsheet program (such as Excel) and the file 
vario.xlsx provided on the book’s website. If you choose the fieldwork option, you 
will also need two 100-m measuring tapes and one 1 × 1-m sampling quadrat. We’ve 
also provided code (see book’s website) if you’d like to try the lab using R 
software.
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 INTRODUCTION

Nature is intrinsically variable, and the evolution and ecology of all organisms are 
contingent on such variation. Landscape ecology is concerned not only with the 
magnitude of this variation, but also with its geometry. Most patterns in nature are 
far more complex than the simple polygons and curves of Euclidean geometry. For 
example, forest edges are rarely straight lines, animal home ranges are not rectan-
gles, and trees are not cones. Therefore, we need special methods to describe the 
shape of nature.

The discipline of spatial statistics has diversified and matured (see Cressie 
1991; Bailey and Gatrell 1995), and it is not possible here to give a full summary 
of the wealth of methods available. Instead, the purpose of this exercise is to 
describe two different methods for characterizing variation in a variable as a func-
tion of position in the landscape. This variable could be a soil nutrient, a measure 
of vegetation height, an index of species composition, or anything else of interest. 
In spatial statistics, we term variables with known locations regionalized vari-
ables, and we label them z (so as not to confuse them with x and y, typically 
reserved for the spatial coordinates, or for independent and dependent variables, 
respectively).

The two methods covered in this exercise are variography, which is part of the 
discipline of geostatistics (see Isaaks and Srivastava 1989), and autocorrelation, 
which is derived from the familiar correlation coefficient (Sokal and Rohlf 1981). 
Recall that the correlation coefficient, r, is a number that varies between −1 and +1 
and reveals the nature of the relationship between two variables. It is close to −1 for 
two variables that are strongly negatively related, close to 0 for unrelated variables, 
and close to +1 for positively related variables. In contrast, variography is derived 
from the variance, which must be a positive number but can otherwise take any 
value.

One of the most important properties of almost all regionalized variables is spa-
tial dependence. Spatial dependence (as assessed by spatial autocorrelation, or 
the tendency of a random variable to be correlated with itself at finite distances) 
means that a variable measured at one location depends, in one way or another, on 
the same variable measured at a different location. Spatial dependence arises for a 
number of different reasons, but let us consider two examples.

If you examine mean annual temperature as a function of position on the globe, 
you will note that (with many important and interesting exceptions) there is a gradi-
ent from warm temperatures at the equator to cool temperatures at the poles. If you 
have two sites that are almost at the same latitude, they will have similar tempera-
tures. On the other hand, two sites that are on different latitudes will have different 
temperatures, and the amount of the difference in temperature will be positively 
(and gradually) related to the difference in latitude. Spatial dependence occurs 
when information available at one location allows you to infer information about the 
other location.
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Another example is in a savanna landscape where widely spaced trees provide 
islands of shade in an otherwise sunny landscape. Two sites that are centimeters 
apart are likely to have a similar amount of sunshine. However, two sites that are 
several meters apart may, or may not, have similar amounts of sunshine—a lot 
depends on the size and spacing of trees. If the sites are hundreds of meters apart, 
you may not be able to predict the sunlight regime very well. So in this case, we 
have spatial dependence at fine scales, but not necessarily at coarse scales. Also, 
unlike the example of global temperature, our regionalized variable consists of 
fairly discrete patches of sun and shade.

The first column of graphs in Figure 5.1 displays a variety of made-up regional-
ized variables with identical means and variances. These hypothetical variables 
have been constructed to illustrate the diversity of patterns that could potentially be 
found in nature. Note that regionalized variables can consist of a variety of features 
such as patches (i.e., homogeneous regions), noise (random, independent variation), 
random walks (a random walk is when a value at a given location equals the value 
at an adjacent location, plus or minus a small random number), or some combina-
tion of these. Also, note that the different variables behave differently as a function 
of scale. For example, patches can be large, small, or intermediate. Stretches of 
linear behavior can also be large, small, or intermediate. Also, noise can operate at 
any scale. If the graphs in Figure 5.1 were based on real data, we would seek bio-
logical explanations for the different scales. Such explanations might involve the 
size and shape of underlying geomorphology, the average size of plant clones, the 
average size of a natural disturbance, the home range size of the dominant mammal 
species, or the average farm size.

Except for variable A in Figure 5.1, there is some spatial dependence. That is, 
nearby locations are, on average, more similar than distant locations. Since similar-
ity typically decreases as a function of distance of separation, we also call this 
phenomenon distance decay. Distance decay has important consequences for liv-
ing things. For example, if soil conditions are very similar at nearby locations (as for 
variables C and F in Figure 5.1), then natural selection might favor plants with short 
dispersal distances. If, on the other hand, soil conditions were spatially unpredict-
able (as for variable A), a long dispersal distance might be advantageous. Similarly, 
the foraging behavior of animals, the growth of plant roots, the spread of fire, the 
flow of water, and the behavior of many other ecological phenomena all depend on 
the nature of distance decay in environmental factors.

In statistics, spatial dependence has both desirable and undesirable attributes 
(Legendre 1993). It means that one can predict variables (to some degree) based on 
geographic location, which can aid in mapping the environment. However, spatial 
dependence also violates the standard statistical assumption of independent obser-
vations (even if samples are randomly located). Thus, unless specifically corrected 
for, many statistical methods are invalid if your data exhibit distance decay. 
Fortunately, there are tools to evaluate the degree and the scales of spatial depen-
dence. The two tools we introduce in this laboratory exercise are the semivariogram 
and the autocorrelogram.
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Figure 5.1 Seven artificial regionalized variables (column 1) as a function of position along a 
transect, along with their corresponding semivariograms (column 2) and autocorrelograms (col-
umn 3). All variables have identical means and variances. The variables can be described as fol-
lows: (a) pure noise; (b) fine-scale noise superimposed on a linear trend; (c) large patches; (d) 
small patches; (e) noise superimposed on large patches; (f) patches with “drift” in their mean 
values, plus fine-scale noise; (g) random walk
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 Variography

Variography is the discipline of using semivariograms (and related graphs such as 
covariograms) to uncover the degree to which the variance in a regionalized variable 
depends on distance (Rossi et al. 1992). The geographic distance between two sam-
ples is termed the spatial lag. Recall that the variance is the square of the standard 
deviation and is a measure of the spread or variation of data. The word semivari-
ance is derived from “half of the variance,” and indeed it is a measure of the vari-
ance of the regionalized variable, z. But what is special about the semivariance is 
that it changes as a function of distance. The semivariance is computed as follows:
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where γ(h) is the semivariance of a lag of distance h, z(i) is the value of a regional-
ized variable z at location i, z(i + h) is the value of z at a location separated from i 
by lag h, and N(h) is the number of pairs of points separated by lag h. The summa-
tion is over all pairs of points separated by distance h. In plain English, the semi-
variance is half of the average squared difference of all pairs of points separated by 
a given distance. A semivariogram is a plot of semivariance versus the lag distance. 
As with the variance, the semivariance cannot be less than zero, but it is not 
bounded on the top.

An idealized, hypothetical semivariogram is given in Figure 5.2. Since the semivari-
ance is directly related to variance, a high value indicates high variation, and a low 
value indicates low variation. Almost always, variance increases as a function of lag 

Figure 5.2 An idealized semivariogram. N = nugget, R = range, S = sill
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distance. In other words, the larger the area you study, the more variable your condi-
tions are. It is important to reiterate that the lag distance is not the same as the distance 
from the origin or starting point. Rather, it is calculated for all pairs of points (Figure 5.3).

At distances less than R (the range), we have spatial dependence (Figure 5.2). 
That is, closer samples are more similar than distant samples. At distances of at least 
h, we have spatial independence; therefore, samples separated by longer distances 
would be valid for conventional statistics. Any area with linear dimensions of at 
least R would have as much variance as the landscape as a whole. A horizontal 
asymptote at distances greater than R is known as the sill. The sill indicates the 
amount of “background” variation.

For a very smooth, regionalized variable, two samples that are infinitesimally 
close to each other may have almost identical values. Elevation of the ground  surface 
almost always behaves this way. However, most variables are not so smooth, if for 
no other reason than measurement error. Such unresolved variation at very fine 
scales is termed the nugget effect, and is indicated by N (Figure 5.2). The term 
derives from the original use of variography in gold mining: at fine spatial scales, 
you either find the gold nugget or miss it. Soil variables such as pH or nutrient con-
centrations typically have very high nugget effects.

The semivariogram specifically address how variance increases as a function of 
scale. Although it can only describe patterns, we often hope to infer the processes 
that generate such patterns. If we find a distinct range, or even a pronounced inflec-
tion in the semivariogram, we suspect that there are different processes operating at 
different scales. For example, if we discover that the range equals approximately 
10 m, we need to seek an underlying process that operates on a scale of 10 m. In a 
forest, this scale could represent the average canopy gap size or the average size of 
a canopy tree crown. In the arctic tundra, the range could represent the average size 
of a permafrost polygon. Of course, you are never guaranteed to actually find a 
range. It is possible (and indeed, likely) that variation in nature increases continu-
ously as a function of scale.

The second column of Figure 5.1 shows the semivariograms for the hypothetical 
regionalized variables. Since very few pairs of points represent very far distances, it 
is usually not advisable to plot γ(h) for large h. A general rule of thumb (adopted 
here) is to plot only up to half of the maximum distance between samples. The 

Figure 5.3 A 20-quadrat-long transect illustrating all of the pairs of points separated by two 
selected lags: 1 and 3
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bumps and wiggles at such far distances in the semivariograms are due to chance 
variation in the data, and not to the underlying process generating the patterns. Note 
that only three of the variables (C, D, and E) have semivariograms remotely resem-
bling those in Figure 5.2. The range of variable C (≈150 units) is much larger than 
the range of variable D (≈25 units), which reflects the differences in patch size. 
Variable E seems to have an inflection at 50 m, which marks the difference between 
noise within patches, and the differences between patches.

The semivariograms of variables B, F, and G are continuously increasing func-
tions. Therefore, there is spatial dependence at broad spatial scales. Three variables 
(A, B, and E) have much fine-scale noise, and hence a substantial nugget effect. 
Note that variable F has very little fine-scale noise, and hence has a negligible nug-
get. Variable A represents pure noise and hence pure spatial independence. For such 
variables, the nugget equals the sill.

 Autocorrelation

Autocorrelograms are plots of the correlation coefficient, r, as a function of lag:
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It is called “auto”-correlation because the variable is correlated with itself. 
Autocorrelation can take values from −1 to +1 although for most applications posi-
tive values are most common. In situations with distance decay, autocorrelograms 
are declining functions and often look like upside-down semivariograms (third col-
umn of Figure 5.1). If there is little fine-scale noise, the y-intercept will be close to 
1.0. In situations in which the semivariogram displays a nugget effect, the y-inter-
cept of the autocorrelogram will be less than 1. An autocorrelation of 0 means there 
is no spatial predictability; this is related to the concept of the sill.

This describes only the simplest kind of autocorrelogram. More complex (and 
usually more appropriate) ways to calculate autocorrelograms, as well as testing 
their statistical significance, are described by Legendre and Fortin (1989), Bailey 
and Gatrell (1995), and Legendre and Legendre (1998). Autocorrelograms are also 
used in the analysis of change through time (also known as “time series”).

 Comparing Autocorrelation to Semivariance

The interpretation of autocorrelograms is very similar to that of semivariograms, so 
the choice between them is largely a matter of taste. Since the correlation coefficient 
is a dimensionless number (i.e., it is standardized), autocorrelograms are useful in 
comparing variables with different units (e.g., plant density and soil calcium). 
Semivariance has a dimension of units squared (so if the regionalized variable is in 
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parts per million or ppm, semivariance is in ppm2). Thus, it is useful in comparing 
different commensurate variables or (more commonly) the same variable in differ-
ent locations. However, semivariance can be standardized for comparing variables 
measured in different units (see Rossi et al. 1992).

Since it is derived from the correlation coefficient, autocorrelation is closely 
related to classical statistical theory. Variography, on the other hand, is a branch of 
geostatistics. This discipline was largely developed for the mining industry to help 
predict the locations of mineral deposits. Variography is a precursor to geostatistical 
interpolation (for mapping) or “kriging” (see Isaaks and Srivastava 1989) and to 
fractal geometry (Burrough 1983; Palmer 1988).

 EXERCISES

EXERCISE 1: Data Collection

Option 1: Field Exercise Using Vegetation Height

 1. Choose a field site in which the maximum height of the vegetation is about 2.5 m 
or less, and in which it is possible to fit a 200-m transect. If the site is large 
enough, randomly choose a starting location and compass direction. If it is too 
small for this, choose an appropriate direction but randomize the starting point, 
so you are not biased by particular plants.

 2. Extend two (or more) 100-m tapes end to end along the chosen compass direc-
tion. Ideally, you would do this with a surveyor’s compass or level. It is crucial 
that the transect be as straight as possible and not influenced by the vegetation!

 3. Beginning at 0 m, establish a 1 × 1-m quadrat (this can consist of three meter 
sticks plus the meter tape as the fourth boundary).

 4. Within this plot, measure and record the height of the tallest plant.
 5. Now repeat the process with an adjacent plot at 1 m, then at 2 m, and continue to 

the end of the transect.

If you do not have the luxury of a large enough field site, it is possible to perform 
this exercise with smaller contiguous quadrats. Also, the regionalized variable need 
not be height: you can perform this same exercise using stem density, biomass, spe-
cies richness, ordination scores, percent cover of bare soil, elevation, percent sun-
light, soil parameters, and more. It may be possible to derive a regionalized variable 
from a map or a remotely sensed image, but be aware that data on such images may 
have already been “smoothed” or interpreted for ease of display, and hence your 
analyses would be inappropriate. Regardless of the overall length and quadrat size, 
try to have at least 200 quadrats in your transect (spatial analyses typically require 
large sample sizes). Another option is to split the class up into two or more groups, 
with each group studying either a different regionalized variable along the same 
transect, or the same variable in a different vegetation type.
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Option 2: Using Provided Data Sets

Some example data sets are provided on the book’s website, in case there are no 
opportunities for collecting new data. The file is entitled vario.xlsx and contains a 
worksheet with three different example data sets.

EXERCISE 2: Data Analysis

You will analyze the data using a spreadsheet. The example given here is for 
Microsoft Excel, but similar commands exist in other spreadsheets. Before begin-
ning this exercise, review absolute and relative cell references, how to graph data, 
as well as the following Excel functions: OFFSET, SUMXMY2, CORREL. Make 
sure that automatic calculation of formulas is in effect (this is the most usual default; 
it means that the results will be continuously updated. Check under File - Options 
- Calculation - Automatic).

 1. Enter your data in the blank worksheet labeled Vegetation Heights. The follow-
ing description assumes that the transect is 200 quadrats long; if not, substitute 
“200” with the correct number.

 2. In row 1, label columns A–F as follows:

A B C D E F

POSITION VALUE LAG SEMIVARIANCE LAG AUTOCORRELATION

 3. In column A, fill rows 2–201 with the numbers 1–200.
(HINT: One quick way to do this is to put “1” in cell A2, and then put the for-
mula: “= A2 + 1” in cell A3. Then copy the contents of A3 and paste them into 
cells A4–A201. Since there were no dollar signs ($) in the original formula, the 
cell reference of A2 is copied as a relative location. Therefore, each one of the 
cells will equal the cell above it plus 1).

 4. In column B, fill rows 2–201 with the data you collected (or copied from the 
provided data sets) in the correct spatial sequence.

 5. In column C, fill rows 2–101 with the numbers 1–100. (Recall the rule of thumb 
that it is best not to plot semivariograms for more than half of the maximum lag 
distance). Repeat this for column E.

Two different ways to calculate the semivariance follow. Method 1 is concep-
tually easier, but method 2 is less labor intensive. Therefore, read and understand 
method 1, but use method 2. It is important to keep in mind that in a transect Q 
units long, the number of pairs of quadrats separated by a given lag distance h 
will equal Q − h. In our example, there are 199 pairs of quadrats separated by 1 m, 
198 separated by 2 m, and 1 pair separated by 199 m (i.e., the first quadrat and the 
last quadrat). Before continuing, review the equation for semivariance.
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Semivariance Method 1: Read and understand this method

 1. In cell D2, put the formula: 
“=SUMXMY2(B2:B200,B3:B201)/(2*(200−1))”
The formula SUMXMY2 means “sum of (x minus y) squared”. The two selected 
blocks (B2:B200) and (B3:B201) are actually the same data, but shifted by a lag 
of 1 unit. The denominator is two times the number of pairs of points separated 
by distance h. It is, of course, possible to put the number 198 in the denominator, 
but writing the formula out often helps with troubleshooting.

 2. In cell D3, write the formula: 
“=SUMXMY2(B2:B199,B4:B201)/(2*(200−2))”
This is the semivariance for a lag of 2. The formula for D4 should be: 
“=SUMXMY2(B2:B198,B5:B201)/(2*(200−3))”

 3. Continue filling in column D until you reach a lag of 100.

Semivariance Method 2: Use this method

 1. Instead of typing in a unique formula for each cell of column D, it is more time-
efficient to type in a generic formula in cell D2:
“=SUMXMY2(B$2:OFFSET(B$2,200−C2−1,0),OFFSET(B$2,C2,0) 
:B$201)/(2*(200−C2))”

NOTE: This is precisely the same formula as in method 1, except for how we specify 
addresses. The dollar signs ($) before the row means a reference to that exact row, no 
matter where you copy and paste the formula. OFFSET returns a new cell address 
and has three arguments: a cell address, the number of rows of separation, and the 
number of columns of separation. Therefore, the block B$2:OFFSET(B$2,200−
C2−1,0) refers to a column of data beginning at cell B2 and ending (199−C2) cells 
below B2. Since cell C2 indicates a lag of 1, the column of data will be the same as 
B2:B200, as desired. The second block, OFFSET(B$2,C2,0):B$201, means a block 
beginning at C2 below B2, and ending at B201. This will be the same as B3:B201. 
The denominator of the equation will equal 2*(200−1).

 2. Copy cell D2 and paste it into cells D3–D101. Note that when you do so, the 
formula remains identical in all cells except that the reference to the lag, column 
C, changes. Thus, the formula will return the semivariance for whatever lag is 
indicated in the same row of column C.

You can calculate autocorrelation by similar methods to those described earlier for 
semivariance.

Autocorrelation Method 1: Read and understand this method

 1. In cell F2, type: “=CORREL(B2:B200,B3:B201)”. This will return the cor-
relation between the variable and itself, with a lag of 1.

 2. In cell F3, type “=CORREL(B2:B199,B4:B201)” for a lag of 2, and con-
tinue filling column F until lag 100.
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Autocorrelation Method 2: Use this method

 1. Following the same reasoning as method 2 for the semivariance, type the follow-
ing in cell F2: 
“=CORREL(B$2:OFFSET(B$2,200−E2−1,0),OFFSET(B$2,E2,0): 
B$201)”

 2. Copy this formula and paste it into cells F3–F101.

Before proceeding further, make sure to save your results.

EXERCISE 3: Results

Using your spreadsheet program, create the following plots:

 1. Vegetation height as a function of transect position
 2. Create a semivariogram as follows:

 a. Plot the semivariance as a function of lag. The data will be in the block C2:D101.
 b. Label the X-axis “Lag (meters)”, and the Y-axis “Semivariance”.
 c. Drag the graph immediately under the graph of the raw data.

HINT: First, make an X,Y (scatter) plot under Insert - Charts - Scatter. Then, 
double-click on any point in the graph and select Format Data Series. In Excel 
2013 onwards, select the icon resembling a paint can (aka Fill & Line) and choose 
Solid Line. In older versions of Excel, select Patterns - Line - Automatic.

 3. Create an autocorrelogram as follows:
 a. Graph the data in E2:F101 and drag the graph under the semivariogram.
 b. Label the axes appropriately.

Interpretations and Rules of Thumb

As with any bivariate (two-variable) graph, the scaling of the Y-axis relative to the 
X-axis should not affect our interpretation, but it often does. A short, long graph 
often appears less “noisy” than a tall, narrow one. It is generally best to choose a 
scaling relatively close to 1:1 (that is, square), or at most 1.5:1 or 1:1.5. Of course, 
there may be exceptions (e.g., if one wants to display the results of numerous tran-
sects, one graph on top of the other, it might be useful to have them short and long).

For semivariograms, it is conventional and advisable for both the x-minimum and 
the y-minimum to be zero. The x-minimum should be zero for the autocorrelogram, but 
a case can be made that the y-minimum and the y-maximum should be −1.0 and +1.0, 
respectively. If part of the goal of the research is to compare the results from different 
transects, x-axes and y-axes of the same kind of plot should be scaled identically.

The plot of vegetation height as a function of transect position will typically have 
some sort of broad-scale pattern, immediately detectable upon inspection, in addition to 
fine-scale variation. The details will vary markedly depending on the nature of your 
plant community. The fine-scale variation may be partially measurement error, but in 
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most cases it is predominantly caused by natural variation. Increasing the number of 
samples (i.e., transect length) will not reduce the magnitude of this fine-scale variation.

The semivariograms and autocorrelograms will also have an overall shape, sum-
marizing the spatial patterns of the community, as well as fine-scale variation. 
However, in contrast to the graph of height, increasing the sample size (transect 
length) will tend to decrease the finer-scale patterns. This means that we are increas-
ingly confident that we have described how spatial pattern (variance or correlation) 
is related to scale (spatial lag).

Q1   How does height behave as a function of distance along the transect? Is this 
generally consistent with your impression of the field site?

Q2   Examine the semivariogram. Is there an identifiable nugget? Range? Sill?

Q3  Does the regionalized variable (height) exhibit spatial dependence?

Q4  Examine the autocorrelogram. Is there spatial autocorrelation?

Q5   How would you describe the nature of your spatial variation? Does your pat-
tern consist of patches? Noise? A dominant trend? Nested patterns of varia-
tion? Random walk? A random walk (also known as “drift”) is when there is 
spatial dependence, but the difference between each number and the previous 
number is random. The term random walk derives from a plot of distance from 
the starting point as a function of time for an animal whose direction of move-
ment is purely random.

Q6   Is there periodicity in your data (i.e., did the response change regularly at several 
spatial intervals)? How would you know this from the shape of the semivario-
gram or autocorrelogram? Note that both the semivariogram and the autocorre-
logram can describe variance as a function of scale, but neither can completely 
summarize the nature of spatial variation (e.g., patches, gradients, or a combina-
tion). This is akin to the observation that variance does not fully describe the 
statistical distribution of data (e.g., whether it is normally distributed), and that 
the correlation coefficient does not fully describe the nature of the relationship 
between two variables (e.g., whether they might have a nonlinear relationship).

Q7   Suppose a rodent species requires tall vegetation for cover. Does the nature of 
the spatial pattern you observe have implications for this species?

Q8   Suppose a predator only hunts in relatively short vegetation. Does the nature 
of spatial variation have implications for foraging behavior?

Q9   Can you think of any other biological ramifications of your results?

Q10  If you collected data from more than one site or variable, how do their spatial 
patterns compare?
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SYNTHESIS

Q11  How does your variable behave in comparison to the supplied data sets? The 
supplied data sets (on the page example data sets in the spreadsheet accom-
panying this laboratory) can be pasted into the data column (column B) in the 
worksheet ready-to-go blank, and the semivariograms and autocorrelograms 
will be recalculated automatically (however, note that you may need to change 
the Y-axis scaling on the graphs).

Q12  Refer to Figure 5.1. Choose two or three of the variables and describe what 
natural phenomena might lead to those patterns.

Q13  If you find spatial dependence, what does this imply for the use of conven-
tional statistics?

Q14  Are some spatial scales better than others for studying your system? Why or 
why not?

Q15  In theory, regionalized variables are measured at points. However, you have 
measured them in a quadrat. What do you expect would happen to the semi-
variogram if you reduced the size of the quadrat?

Q16 What is noise? Is it a useful concept?

 OPTIONAL EXERCISES

EXERCISE 4: Correlation and Variation

As their names imply, the autocorrelograms and semivariograms stress correlation 
and variance, respectively. Therefore, they are likely to behave differently in data 
sets with different variance. In the supplied spreadsheet accompanying this exer-
cise, locate a worksheet entitled 2 hypothetical variables. Examine the two vari-
ables carefully.

Q17 How do these variables differ?

Q18 How do you expect their semivariograms and autocorrelograms to differ?

Q19  Now copy one of the variables and paste it in the data column (column B) in 
the sheet labeled ready-to-go blank. Examine both the semivariogram and 
autocorrelogram. Now repeat with the second variable. Were you right in your 
answer to the previous question?
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EXERCISE 5: Variography and Fractals

Plot your semivariogram on a double logarithmic scale. Do this by left- clicking on 
the X-axis of your semivariogram. Then right-click and choose Format axis. Select 
Scale and click Logarithmic. Repeat the same procedure for the Y-axis.

Q20  Is the semivariogram a straight line? If so, we can say that the variable is statis-
tically self-similar. This means that fine-scale patterns are indistinguishable 
from scaled-down versions of broader-scale patterns. The concept of “self-sim-
ilarity” is intrinsic to the study of fractal geometry. The fractal dimension D can 
be determined from the slope m of the log-log semivariogram with the formula 
D = (4−m)/2. The interpretation of the fractal dimension is beyond the purpose 
of this chapter; see Burrough (1983) and Palmer (1988) for more details.

Q21  Are there multiple plateaus? If so, we have a hierarchy of spatial patterns. This 
would imply that we have distinctly different processes operating at distinctly 
different scale domains.

Q22  Would you predict that most spatial patterns in nature are self-similar, 
hierarchical, or neither?

EXERCISE 6: Variography using R

R code for semivariograms and autocorrelograms is provided on the website for this 
book. Repeat the same analyses as presented in the main lab, but using the supplied 
code instead.

FURTHER STUDY

This exercise only considered one-dimensional patterns. However, ecologists typi-
cally study spatial patterns in two dimensions. The same formulas for semivariance 
and autocorrelation hold, but the calculations are a bit more complicated because 
distances no longer fall in discrete lag intervals. Therefore, we typically average 
semivariance over a certain range of lags. A further complication arises if the pat-
terns are not isotropic (statistically the same in all compass directions). In such 
cases, we usually calculate different semivariograms and autocorrelograms for dif-
ferent directions.

Furthermore, sampling need not be in a perfectly sampled transect as in this lab. 
It is perfectly legitimate for samples to have locations that are random, on inter-
rupted transects and grids, or any other objective method. When samples are located 
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at irregular intervals (and/or in two dimensions), many of the spatial lags are not a 
simple multiple of the minimum spacing. We deal with this by creating “lag classes” 
(e.g., 0–1 m, 1–2 m, 2–3 m) much in the same way as we would generate a histo-
gram. Although there are no firm rules about how many pairs of points should fall 
within a lag class for an accurate semivariogram or autocorrelogram, a general rule 
of thumb is that it should be at least 80.

In this lab, we interpreted semivariograms and attempted to find the range, sill, 
and nugget by eye-balling. However, it is common to use a curve-fitting procedure 
such as nonlinear regression to actually obtain estimates of these parameters (see 
Legendre and Legendre 1998), as in Chapter 11. Such curve-fitting is an essential 
step for procedures such as kriging, discussed next.

Variography is often a precursor to a geostatistical interpolation procedure 
known as kriging (Hohn 1988; Isaaks and Srivastava 1989; Cressie 1991). By inter-
polation, we mean that we estimate the value of a regionalized variable at an unsam-
pled location, based on knowledge from sampled locations. The most common 
product of kriging is a map (usually a contour map) of the variable of interest. 
Kriging performs best when the nugget is small relative to the sill and when the 
average distance between nearby samples is less than the range. See Legendre and 
Fortin (1989), Halvorson et al. (1994), Marinussen and Van Der Zee (1996), and 
Carroll and Pearson (1998) for examples of kriging in ecology.

One may have noticed a resemblance between the semivariogram and the well-
known species–area relationship (Scheiner 2004). This resemblance is more than 
casual. As Wagner (2003) elegantly illustrates, distance decay in species distribu-
tions scales up to distance decay in species richness, one of the root causes of the 
species–area relationship (Palmer and White 1994). Indeed, Wagner (2003) devel-
ops numerical techniques by which one can separate how much of the semivario-
gram for species richness is due to intraspecific autocorrelation, and how much is 
due strictly to interspecific co-occurrence. Such techniques elevate variography 
beyond mere description of pattern, and into the realm of uncovering fundamental 
properties of biodiversity such as those explored in Chapter 15. While we have only 
discussed univariate patterns in this lab, bivariate or multivariat patterns are often of 
interest. If so, we can use covariograms or cross-correlograms to determine whether 
the relationships between variables change as a function of spatial scale. Additional 
multivariate approaches are also explored further in Chapter 15.

Lastly, for a simple analysis of spatial pattern along a transect (as in this lab), it 
is possible to perform basic calculations on a spreadsheet. However, a spreadsheet 
becomes cumbersome for more complex sampling designs such as interrupted or 
two-dimensional sampling and for complex analyses such as detection of anisot-
ropy, significance testing, nonlinear curve-fitting, multivariate patterns, or kriging. 
Fortunately, a wide range of software exists for such analyses, including packages 
in R and GIS software (Chapters 11 and 15).

5 Scale Detection Using Semivariograms and Autocorrelograms
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Robert H. Gardner

R.H. Gardner (*) 
Appalachian Lab, University of Maryland Center for Environmental Science,  
Frostburg, MD, USA
e-mail: rhgardner99@gmail.com

OBJECTIVES

Spatial patterns of landscapes are the result of numerous biotic, abiotic, and anthro-
pogenic processes, and every landscape is in some way unique. Neutral landscape 
models—models that lack the explicit consideration of the particular processes gen-
erating landscape pattern (Gardner et al. 1987; Gardner and Engelhardt 2008) have 
proven to be a helpful first step in characterizing pattern in the absence of specific 
ecological processes and thus serve as a null hypothesis, or baseline, for comparison 
with actual landscapes. Neutral landscape models have led to new understanding 
about habitat connectivity thresholds and the influence of landscape composition on 
spatial configuration (see Gardner and Urban 2007 for a review), and they offer a 
practical means of generating multiple landscape maps with similar statistical prop-
erties. This lab is designed to:

 1. Illustrate the methods used for generating neutral landscape models;
 2. Explore methods for analyzing patch structure with particular emphasis on the 

use of different neighborhood rules for identifying patches;
 3. Explore the factors influencing connectivity in landscapes as well as threshold 

effects in connectivity; and
 4. Examine the use of neutral models for formulating hypotheses regarding the 

relationship between pattern and process in actual landscapes.

Before data are collected or experiments are performed, the analysis of land-
scape pattern requires (at least) two things: (1) a clearly stated, testable question or 

mailto:rhgardner99@gmail.com
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hypothesis, and (2) robust quantitative methods to address that question (Gardner 
and Urban 2007). Throughout this lab, a variety of neutral models will be gener-
ated to create a broad range of landscape patterns. Students will also become 
familiar with a number of common metrics used to quantify patterns in these land-
scapes. The concept of connectivity will be addressed, particularly with respect to 
the neighborhood rules used to define “patches,” or “clusters,” of habitat in a 
landscape.

The four exercises of this lab help students develop testable questions and inter-
pret quantitative results. The first exercise provides familiarity with computational 
methods and can be completed entirely by hand or in Excel. The second investigates 
the surprising degree of structure present in simple random models and illustrates 
threshold effects. The third exercise uses multifractal maps to examine contagion 
effects. The fourth exercise compares metrics of real landscapes with those of a 
neutral model. You will be using Qrule software for Exercises 2–4, with a series of 
R files to analyze and display results. All software for this lab is free and can be 
downloaded from the book website! Some familiarity with R as well as Chapters 4, 
5, and 7 is a nice complement to these exercises.

 INTRODUCTION

Neutral, or null, models in ecology provide a useful baseline for comparison when 
examining potential cause-and-effect relationships. In terms of landscape pattern, a 
neutral model is one that exhibits characteristic spatial patterns in the absence of 
processes that may affect patterns in actual landscapes (e.g., topography, resource 
gradients, and disturbance regimes; Gardner et al. 1987; With and King 1997; 
Gardner and Urban 2007). In the neutral models examined here, landscape pattern 
is an emergent property of either simple random processes or via algorithms derived 
from fractal geometry that create random but auto-correlated patterns (e.g., multi-
fractal maps). Comparing patterns and landscape indices for real landscapes with 
those from neutral landscape models can provide insight into the effects of ecologi-
cal processes on landscape patterns; if a real landscape differs significantly from an 
appropriate neutral model, it is quite likely that some important ecological process 
is driving observed patterns. This insight allows the investigators to focus efforts on 
specific landscape processes and attributes (rather than a broad “shotgun” approach) 
to possibly reveal pattern–process relationships operating in heterogeneous 
landscapes.

Landscape pattern analysis usually begins by converting continuous land-cover 
data (e.g., derived from satellite images) into a gridded map of land-cover categories 
for analysis by computer programs. Most analysis methods involve identification of 
habitat patches (or clusters) and description of their sizes, shapes, and spatial 
arrangements. Although the clustering of habitat into patches may be visually obvious, 
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clear patch-definition rules are needed for computers to identify habitat patches 
uniquely and unambiguously.

The most basic “rule” for patch definition is referred to as the “nearest-neighbor 
rule” (Figure 6.1a). The nearest-neighbor rule states that if two similar sites have 
one edge along one of the four cardinal directions in common (i.e., adjacent pixels), 
then they are “joined” and are members of the same patch. Iterative application of 
this rule to each “joined” site results in the identification of members of a single 
patch. This rule requires sites to touch along one edge to be members of the same 
patch, and thus a single row arranged diagonally (along a non-cardinal direction) 
will not be identified as a single continuous patch!

Figure 6.1 Three primary neighborhood rules: (a) the nearest (4) neighbor rule; (b) the next-
nearest (8) neighbor rule; and c. the third-nearest (12) neighbor rule. The additional neighbors 
added to this sequence of increasing neighborhoods for each shaded pixel are indicated by the dot 
in the pixel center

6 Characterizing Categorical Map Patterns Using Neutral Landscape Models
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More commonly used in ecology is the eight-neighbor rule (Figure 6.1b), also 
called the next-nearest neighbor rule. It states that similar habitat cells are members 
of the same patch if they touch along one of their four edges (cardinal directions) or 
four corners (the diagonal directions). While corner sites are not considered mem-
bers of the same patch with the nearest-neighbor rule, they are members of the same 
patch with the eight-neighbor rule.

Changing the patch-definition rule, such as by increasing the neighborhood that 
is searched for patch members, alters the metrics used to characterize landscape 
structure—something we will explore here. The use of different rules for defining 
patches for a landscape analysis is, in part, how Qrule gets its name. The user may 
define any rule he/she wishes with three rules conveniently “hard-wired” into Qrule 
code. The third “hard-wired rule” is the third-nearest-neighbor rule (Figure 6.1c) 
which extends consideration to sites that may not directly touch! Although we do 
not emphasize the third-nearest-neighbor rule in this lab, it can be useful for identi-
fying habitat patches for an organism that effectively ignores a single cell gap of 
non-habitat within an otherwise continuous patch.

Once patches are identified, computer analysis quantifies patch attributes includ-
ing size, shape, and spatial arrangement. Drawing inference from these results is 
problematic because, since so many metrics may be calculated, some will be statisti-
cally significant by chance alone (a Type II statistical error); a theme also explored 
further in Chapter 7. Neutral models were developed, in part, to avoid this problem 
by providing a standard against which the patterns of actual landscapes could be 
compared (Gardner et al. 1987; Gardner and Urban 2007). When hypotheses are 
clearly stated before the analysis begins, using a limited set of specific metrics helps 
avoid obtaining spurious, but apparently significant, results.

The simplest neutral landscape model (NLM) is a random map generated by 
assigning to each grid cell a probability of the cell being occupied by “habitat.” 
Such a simple random map contains only two land-cover categories (habitat and 
non-habitat) and the proportion of the landscape occupied by habitat is similar to the 
probability of the cell being occupied by habitat. Before embarking on the computer- 
based generation and analysis of neutral landscape models, we begin with an exer-
cise that demonstrates the basic procedure used by the computer algorithm.

EXERCISE 1: Simple Random Map(s) Analyzed with Three Different 
Neighborhood Rules

The purpose of this exercise is to become familiar with the method for generating 
and analyzing patch structure in random maps and the effect of changing neighbor-
hood rules for defining patches. Your first step is to generate “by- hand” a simple 
random map with rows and columns equal to ten and the proportion of a cell being 
occupied, p = 0.5. This exercise should be done with paper and pencil according to 
the following steps (Alternatively, see the instructions for using spreadsheet soft-
ware, listed after the “by-hand” instructions).

R.H. Gardner
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Instructions for Generating and Analyzing a Simple Random Map 
“By-Hand”
 1. Use graph paper to create a grid with ten rows and columns.
 2. Repeatedly flip a coin to determine the habitat type of each cell. If heads, then 

the habitat type equals 0. If tails, then the habitat type equals 1.
 3. Analyze the map by coloring in all sites with habitat type = 1.
 4. Count the total number of colored cells, the total amount of edge, the number of 

clusters as defined by the nearest-neighbor rule, and the size of the largest 
cluster.

 5. Using the next-nearest-neighbor rule, recalculate the number of clusters and the 
size of the largest cluster. (NOTE: the total number of colored cells and the total 
amount of edge will not be affected by this change in neighborhood rule.)

 6. Record your results in tabular form.

Instructions for Using a Spreadsheet to Generate a Matrix  
of Random Numbers
Open Excel and then:
 1. Open a new worksheet
 2. Type this equation in the first cell: “=rand()” (this produces a single random 

number between the interval 0.0–1.0).
 3. Copy this cell to a 10 × 10 grid of cells
 4. Analyze the map by coloring all sites with random numbers ≤0.5
 5. Print the resulting matrix and go to step 4 of the “by-hand” directions

Q1  The generation of maps by hand is a tedious exercise that results in a small, 
inadequate sample size. Does the number of habitat sites of type 1 equal exactly 
50% of the map? How many sites with habitat of type 1 touched the edge of the 
map? How many of these sites that touched the edge of the map would have 
adjoined another site of habitat type 1 if the map size was increased? (HINT: 
See Gardner et al. 1987, for a discussion of cluster truncation effects.) How big 
would clusters be if the map size were increased?

Q2  Combine your results with those of other students and statistically summarize 
(e.g., mean, standard deviation, minimum, maximum) the number of cells of 
habitat, total amount of edge, number of clusters, and the size of the largest 
cluster. What are the most reliable statistics (i.e., which ones have the lowest 
coefficient of variation)?

Q3  Do you expect the results from actual landscapes to be more or less variable 
than random maps? Explain your rationale.

6 Characterizing Categorical Map Patterns Using Neutral Landscape Models
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 Using Qrule to Generate and Analyze Neutral 
Landscape Models

The remainder of this lab will be performed using Qrule, a program written in 
Fortran with separate versions that run in either DOS or Linux. The latest version of 
Qrule makes several improvements over older versions, including the output of 
statistics in metric units rather than pixel units. See documentation, Qdocumentation.
pdf for details. Qrule was developed to be a research tool—and it still is used as 
such! Consequently only minimal attention has been devoted to making Qrule 
“user friendly.” Qrule does not have a GUI (graphical user interface); nor does it 
produce instant graphical output or data displays. It may “crash” if you input con-
flicting or incorrect information (i.e., a file name that does not exist in the directory 
specified). The good news is that a few simple “tricks” detailed below will allow 
you to run Qrule in a remarkably efficient and flexible manner.

Several types of maps can be generated by Qrule. The ones of interest for this 
exercise are simple random maps and multifractal maps (Figure 6.2). Maps created 
by other programs—especially those developed from remotely sensed images—
may also be read into Qrule for analysis of spatial patterns. The algorithms are 
explained briefly below.

Simple random maps (Figure 6.2a) may be created by specifying the number of 
rows and columns in the map, the number of habitat types to be generated, and the 
probabilities, pi, associated with each habitat type i—including the probability, p0, 
for areas lacking any habitat at all. Table 6.1 provides a sample dialog for Qrule 
execution producing a random map with 128 rows and columns and two habitat 
types. A uniform random number (URN, a computer-generated random number 
ranging from 0.0 to 1.0) is iteratively used to randomly and independently assign a 
habitat type to each grid site. 

In Table 6.1, the example specifies the value of p0 = 0.1, p1 = 0.3, and p2 = 0.6. If 
URN ≤ p0, then the site is set to “non-habitat”; if URN is between 0.1 and 0.4, the 
site is set to habitat type 1; and if the UNR > 0.4, it is set to habitat type 2 (also notice 
the cumulative probability distribution, CumP in Table 6.1 and the realized proba-
bilities for habitat types 1 and 2 were 0.301 and 0.5991, respectively. The definitions 
for each landscape statistic calculated by Qrule are given in Table 6.2.

Multifractal maps produce patterns that are quite realistic (Figure 6.2b–d) because 
a fractal algorithm is used to produce spatially correlated patterns of land cover. 
Fractal maps have been frequently used by investigators wishing to use random but 
more realistic maps to simulate biological and physical processes (e.g., With 1994; 
Plotnick and Prestegaard 1995; Wiens et al. 1995). Multifractal maps (Figure 6.2b–d) 
are generated in Qrule by the midpoint displacement algorithm (MidPointFM2d, 
Saupe 1988). This algorithm creates a map of real numbers by iterative interpolation 
to locate the midpoint of a line, followed by perturbation of the line’s midpoint by a 
Gaussian random value (GRV). Successive reductions of the variance of the GRV as 
the distance between points becomes finer and finer produces correlated patterns. 
Two parameters are used by Qrule to control this process:
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• L, the “number of levels” or iterations of the midpoint displacement algorithm. 
The size of the map will always equal to 2L. For instance when L = 4, then the 
dimensions of the map (number of rows and columns) = 16; when L = 6, map 
dimensions = 64, etc.

• H, the parameter that controls the rate of reduction of the GRV in successive 
iterations of the midpoint displacement method (H may range in value from 0.0 
to 1.0).

The generation of successive finer Gaussian increments results in the variance 
between points separated by distance x that is approximately equal to x2H (assuming 

Figure 6.2 Sample maps produced in RULE: (a) a simple random map, and multifractal maps 
with (b) H = 0.1, (c) H = 0.5, and (d) H = 0.9. In each instance, the value of p, the proportion of 
black cells within the map, is equal to 0.5

6 Characterizing Categorical Map Patterns Using Neutral Landscape Models
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Table 6.1 Sample Qrule dialog producing a Simple Random Map with two habitat types
User response to questions by Qrule are given in Bold Italic. All Output by Qrule is also 
 written to a disk file: rulerun.log

./Qrule.exe
Qrule (v 4.1) Landscape Pattern Analysis   20131113

Enter map type to be analyzed:

<I> Input existing map file

<R> Generate a random map (with replacement)

<S> Generate a simple random map

<M> Generate a multifractal random map

<G> Generate a multifractal random map with a gradient

<X> Use input map as mask, generate "seeded" map

<Y> Use input map as mask, generate siple random map
s

Map choice: S

Enter number of map rows and columns (max = 20000 ea.)

128 128

Rows x Columns =  128 x  128

Enter a negative random number seed

-191827

Random number seed:    -191827

Enter the neighborhood rule

1 - nearest neighbor (N_nb = 4)

2 - next nearest neighbor (N_nb = 8)

3 - 3rd nearest neighbor (N_nb = 12)

4 - user defined

(continued)
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Enter the number of replications

10

N_Reps =     10

Create an output maps?

N = None

G = generated map

S = cluster Size map

1
Rule choice is: 1

Enter the number of map classes
2

Map classes =     2

Enter the   3 probabilities, starting with p(0)

0.1

0.3

0.6

The normalized probabilities are:

P          CumP

0    0.1000     0.1000

1    0.3000     0.4000

2    0.6000     1.0000

C = cluster ID map

Table 6.1 (continued)

(continued)

6 Characterizing Categorical Map Patterns Using Neutral Landscape Models



92

Mean Association Matrix

Avg ChiX = 8.35187 w/ 4 df (FXceed (9.4480= 0.3000)

0        1        2

0   0.010298 0.030043 0.059652

1   0.030043 0.090493 0.180387

2   0.059652 0.180387 0.359046

p's  0.099992 0.300923 0.599085

Perform map analysis?

<N>o analysis

<L>acunarity analysis

<R>ule analysis

<A>ll (both Rule and Lacunarity)
r

Analysis method: RULE

What is the resolution of each grid element?

(length of the side of a grid element, in meters)
30

Resolution:  30.0000     meters

n
Map output choice = N

Table 6.1 (continued)

(continued)
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STATISTICAL SUMMARY (N=    10; Resolution= 30.0000 meters)

--Cover Type 0 (non habitat)-- [p =  0.1000   Cum. p =  0.1000]

--Land Cover Type  1-- [p =  0.3010   Cum. p =  0.4009]

Variable  Units  Mean        St.Dev.       C. V.      Minimum      Maximum

L.C.size  ha  2.44800     0.510529      20.8549      1.89000      3.51000

L.C.edge  m   1566.00      286.287      18.2814      1260.00      2160.00

L.C.fract - 1.51835     0.710262E-01  4.67785      1.41497      1.66736

L.C._rms  m   119.670      12.6254      10.5502      96.9325      134.728

TTL clstr N   2118.20      46.5422      2.19725      2048.00      2210.00

TTL edgs  m   415206.      5080.47      1.22360      404580.      423300.

Sav size  ha 0.451091     0.201442E-01  4.46567     0.424208     0.485755

S_Freq    N   4931.10      50.0132      1.01424      4833.00      4989.00

Cor_len   m   73.7511      3.46446      4.69750      68.6342      79.3984

Perc      %   0.00000      0.00000      0.00000      0.00000 0.00000

--Land Cover Type  2-- [p =  0.5991   Cum. p =  1.0000]

Variable  Units  Mean        St.Dev.       C. V.      Minimum      Maximum

L.C.size  ha  367.317      140.730      38.3128      212.310      655.110

L.C.edge  m   178968.   68017.9      38.0056      102360.      317880.

L.C.fract - 1.75286     0.437641E-01  2.49672      1.68642      1.83279

L.C._rms  m   1270.99      169.286      13.3192      976.709      1483.23

TTL clstr N   463.000      36.6667      7.91937      386.000      512.000

TTL edgs  m   477390.      3784.05     0.792653      469200.      482160.

Sav size  ha  220.843      111.444      50.4632      129.076      487.170

S_Freq    N   9814.90      50.0354     0.509791      9757.00      9913.00

Cor_len   m 1193.55      196.669      16.4776      869.864      1480.94

Perc      %  0.500000     0.527046      105.409      0.00000      1.00000 

Table 6.1 (continued)
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that σ2, the variance of the Gaussian process, is equal to 1.0). Thus, extremely frag-
mented patterns are produced when caused by a fractal algorithm that causes nega-
tive correlations among sites (i.e., H less than 0.5; Figure 6.2b) while positive 
correlations of differences produce highly aggregated patterns (i.e., H greater than 
0.5; Figure 6.2d). For further details regarding the use of multifractal maps, see 
Plotnick and Gardner (1993), Pearson and Gardner (1997), and With and King (1997).

Analyzing real landscapes with Qrule simply requires that the map type be defined 
as I indicating that a map will be input rather than generated. Then, the full name of 
the map file (e.g., “C:/foldername/mapname”) is entered and then the number of 
rows and columns and the number of habitat types is specified. The landscape map 
file must be a space delimited sequence of ASCII integers representing each habitat 
type. An example input map file, anti_128.map, is provided with this exercise.

 Instructions for Using Qrule

Acquiring software. All exercises require Qrule. A text editor will also be needed 
for handling scripts (see explanation and example below) and examining output. 
There are many good choices for a text editor, but a particularly useful one is 
Notepad++. Statistical and graphical analysis may be performed either with R or 

Table 6.2 Indices of spatial patterns produced by Qrule for each habitat type

Index Definition

L.C.size The size of largest cluster (total number of grid units making up the largest 
cluster)

L.C.edge Number of edges of largest cluster sites adjacent to a different habitat type
L.C.fractal Fractal index of largest cluster estimated as ln(L.C.edge) / ln(average diameter 

of the cluster)
L.C._rms Mean squared radius of largest cluster (also known as the radius of gyration, 

Stauffer and Aharony 1992). If ri is the ith of s sites in the cluster, then  
L.C._rms = ∑(ri – rj)2 / s2. Diffuse sites of size s will have a larger L.C._rms 
than more compact sites

TTL clusters Total number of clusters on the map
TTL edges Total edge of all clusters
Sav size Area weighted average cluster size. If Si is the size of the ith cluster, then 

Sav =
s

s
i

j

2å
å

S_Freq Total number of sites of current habitat type. P, the fraction of sites of the 
current habitat type are estimated as: P = S_Freq/(nr * nc), where nr and nc are 
the number of rows and number of columns of the map, respectively

Cor_len Average mean squared radii of all clusters
Perc/freq Frequency (percent of all maps) with a cluster large enough to span the 

dimensions of the map

NOTE: Units for each index are indicated in program output and Table 6.1. See Gardner (1999) for 
additional details concerning the calculation of each index
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using Excel. The current version of Qrule (V4) may be acquired at either the web-
site for this book or the Qrule website (http://www.umces.edu/al/program/gardner/
qrule). The current version of Notepad++ can be downloaded at www.notepad.
todownload.com and R (R Development Core Team 2010) from www.r-project.org. 
Excel is, of course, part of the Office software distributed by Microsoft.

(NOTE: An important word on operating systems. There are hundreds of operating 
systems (and multiple versions of each OS), but Qrule runs on only two: DOS 
(Disk Operating System, a part of Microsoft Windows distributions more correctly 
referred to as MS-DOS), and Linux. We provide here descriptions for running 
Qrule under DOS. Those using Linux will have little difficulty adapting the follow-
ing instructions for this OS.)

Unpacking Qrule. Download Qrule into a directory you have created—ideally, 
one at the top of your directory tree (e.g., c:/Qlab). Extract all files from the zip file 
(see Table 6.3 for a list of files contained in this zip file). This action will create a 
series of subdirectories. Next, go through the following steps.

 1. Assuming you are running Windows software, open the start menu in the lower 
left corner of the screen (a separate application in Windows 8 titled “Command 
prompt” provides this functionality). Next click on the run icon and then type 
cmd in the window that opens and check OK. This action has opened a DOS 
window (see Table 6.4 for some useful DOS commands).

Table 6.3 Overview of files for this lab exercise

File Name Function Location

QruleV4.exe Executable file for Qrule Qlab
sample.scr Script file for generating random map Qlab
sample.scr Copy of above script file Qlab/Ex1
multifract.scr Script file for generating multifractal map Qlab/Ex2
Qcfd.R R program for generating cumulative frequency 

distributions
Qlab/Ex2

Qcfdfun.R Function called by Qcfd.R Qlab/Ex2
anti_128.map Actual map for analysis Qlab/Ex3
anti_128.scr Script file for analysis of the anti_128.map Qlab/Ex3
Zview.R R program for map display Qlab/Ex3
mapview.R Function called by Zview.R Qlab/Ex3

Table 6.4 Useful DOS Commands

Command Definition Example

Cd change directory cd C:/Qlab/Ex1
Dir list directory dir
Copy copy file copy rulerun.log rulerun.abc.log
Del delete file del rulerun.log
Edit simple editor edit sample.scr
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 2. Navigate in the DOS window to the directory where you have placed the Qrule 
files. If you created a directory called C:/Qlab in your user area, then simply type 
cd C:/Qlab to reach that directory. Then, use cd to navigate to the appropri-
ate subdirectory (e.g., cd Ex1 will take you to the Ex1 subdirectory under Qlab). 
The executable Qrule (file name is QruleV4.exe) exists under C:/Qlab. It will be 
easiest if you copy QruleV4.exe into each subdirectory.

 3. Then, to execute, type QruleV4.exe and answer the questions that the pro-
gram asks (if you can! Explanations for each input are provided subsequently.)

A test run using a script file. The program executable file for DOS is QruleV4.exe. 
The series of interactive questions required to run Qrule is tedious and error- prone. 
Many errors in input may cause Qrule to crash. No harm is done when it crashes (I 
told you it isn’t user friendly), but you do have to start over. A more efficient, error-
free method of running Qrule is to assemble all required inputs into a script file and 
run all analyses in batch mode. A sample script file, sample.scr, is provided to 
illustrate running Qrule in batch mode (this is not part of the lab—just a practice 
run to see how script files are used). To run in batch mode:

 1. Open the sample script file (sample.scr) with a text editor such as Notepad++. 
See Qdocumentation.pdf for description of the contents of sample.scr which 
has all the interactive answers to a Qrule run. Examine this file. You also may 
want to use this as a base from which to make modifications for future runs by 
changing and resaving the file.

 2. Run Qrule using sample.scr by typing in the DOS window:

 QruleV4.exe<sample.scr  

Program results and output. Once Qrule executes, the screen output has a lot of valu-
able information, which is difficult to print and save. Therefore, all output is automati-
cally written to a text file in the directory from which you have been running Qrule. 
The name of the output “log” file is rulerun.log. You can look at this file in Notepad++ 
and print it if you like. [IMPORTANT: You should save it to a unique name before run-
ning Qrule a second time because each execution of Qrule will overwrite this file. Type 
copy rulerun.log yourpreferredname.log].

In the test run example, the screen and logfile contain the statistics for 10 land-
scape metrics for each of the land-cover types simulated (in this case, there are 
two—the habitat and non-habitat). The meaning of these metrics is given in Table 6.2. 
Because ten map iterations were performed, Qrule provides a statistical summary 
of each metric—its mean, standard deviation, C.V. (coefficient of variation), mini-
mum and maximum values. The statistical results are also saved in a separate disk 
file, stats.csv in the directory in which the Qrule is located. This file may be viewed 
in Notepad++ or Excel. The file contents are described in Qdocumentation.pdf.

In addition to rulerun.log, five other files are created each time Qrule is exe-
cuted: assmat.dat, stats.csv, patch_cfd.dat, sample.map, and arcgrid.map 
 (descriptions of each file can be found in Qdocumentation.pdf.). We ignore assmat.
dat for now but will use the other files with R programs to illustrate and examine the 
Qrule results.
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EXERCISE 2: Random Maps and Critical Thresholds

A central concept to emerge from neutral landscape models (which were themselves 
derived initially from a branch of physics called percolation theory; Stauffer and 
Aharony 1992) is that of critical thresholds. In short, small changes in p can result 
in sudden changes in spatial patterns, and in particular, whether habitat is connected 
from one edge of the map or not. The value of p at which spatial patterns on a ran-
dom map change qualitatively is called the percolation threshold, typically abbre-
viated as pc or pcrit. In this exercise, we use Qrule to generate and analyze a series 
of simple random maps as a function of p, which will range from 0.1 to 0.9. The 
results of four landscape metrics (total number of patches, total edge, area-weighted 
mean patch size, and frequency of percolation among the map replicates) will be 
examined to determine if and at what values of p a percolation threshold may exist.

 1. You and/or your team will generate a series of random maps using a specific 
neighborhood rule.
 a. If your last name begins with a letter in the range A–L then use neighbor-

hood rule 1 (nearest-neighbor); M–O then use neighborhood rule 2 (next 
nearest-neighbor); P–W then use neighborhood rule 3 (third nearest- 
neighbor).

 b. If you do not have a last name you are excused from this exercise.

 2. Open a command window and navigate to the Qlab directory. Under the subdi-
rectory Ex1 you will find a script file, sample.scr, which is set to generate a 
random map with two habitat types. Each habitat type will have a value of p of 
0.5. Run this file by typing:

 QruleV4.exe<sample.scr  

 3. Save the rulerun.log file in Windows Explorer or by typing in the command 
window:

 copyrulerun.logrulerun.ran55.log  

 4. Save the patch_cfd.dat and stats.csv files in a similar manner producing files 
named patch_cfd.ran55.dat and stats.ran55.csv by typing:

 

copypatch_cfd.datpatch_cfd.ran55.dat
copystats.csvstats.ran555.csv  

 5. Now open sample.scr in Notepad++ (or another suitable editor) for a series of 
changes. First, change the two probabilities (i.e., habitat, non-habitat) for land-
cover generation from 0.5 to 0.1 and 0.9 (but leave p0 unchanged). Save the 
edited file to sample.91.scr. Edit again, changing probabilities to 0.2 and 0.8, 
saving the script file as sample.82.scr. And a third time with probabilities of 0.3 
and 0.7, saving as sample.73.scr. One last time changing to 0.4 and 0.6, saving as 
sample.64.scr. You will now have four new script files.
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 6. Repeat the above process outlined in steps 2–4, running Qrule separately for 
each script file and then renaming the log files and the patch_cfd.dat and stats.
csv files after each run (and before the next sequence of runs begins!).

 

QruleV4.exe<sample.91.scr
copyrulerun.logrulerun.ran91.log
coopypatch_cfd.datpatch_cfd.ran91.dat
copystats.csvstats.ran991.csv  

 7. When you have finished you will have five log files and five corresponding data 
sets, which contain the results from Qrule for ten different values of p analyzed 
using one of the three neighborhood rules. You may use a text editor (e.g., 
Notepad++) to print and examine the results of each log file. The details of each 
simulation have been preserved in the csv files, which may be opened with Excel 
directly (or R which isn’t quite as simple).

 8. Using separate graph windows, plot the values from “TTL clstr”, “TTL edgs”, 
“Sav size”, and “Perc” on the Y-axis as a function of p on the X-axis.

Q4  Were the resulting fractions of each land-cover type in the results (see the log 
files) equal to what was specified in the script files? If not, why not?

Q5  What is the meaning of po? And why is it always set to zero in the above 
sequence?

Q6  Inspect the plots of “Sav size” and “TTL edge” versus p and describe the result-
ing relationships.

Q7  Plot “Sav size” against “L.C. size”. What does this relationship show?

Q8  Inspect the histogram of “Perc” as a function of p. What do these results 
indicate?

Q9  Compare your results with the other class teams that used a different neighbor-
hood rule. How does the neighborhood rule affect the location (i.e., p) of a criti-
cal threshold changes in metric values? Explain why you observe such changes?

EXERCISE 3: Spatial Contagion

In real landscapes, habitats are seldom (if ever) distributed in a completely random 
manner. Instead, land-cover categories have some degree of spatial autocorrela-
tion, or contagion, in which nearby locations are likely to be similar to one another. 
Hopefully you explored this concept already in Chapter 5. Autocorrelated patterns 
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also can be represented using neutral landscape models, but a more complex algo-
rithm is required to produce the spatial contagion. The patterns with autocorrela-
tion are still neutral landscape models because no particular generating process 
besides spatial autocorrelation is specified. However, they produce patterns that 
appear more realistic and allow the user to control the amount of spatial autocor-
relation in the habitat. Neutral landscape models with spatial contagion have been 
used for a variety of studies, including landscape–genetics relationships (Graves 
et al. 2012), nitrogen cycling (Gergel et al. 2005), and animal movement (With 
et al. 1999).

This exercise will compare the distribution of patch sizes produced from sim-
ple random maps with those generated with a significant degree of spatial auto-
correlation. The maps are produced using the multifractal algorithm described 
above in which the parameter H controls the level of autocorrelation. Higher val-
ues producing greater spatial autocorrelation, i.e., a more clumped distribution of 
the habitat. The instructions below will allow you to run Qrule once to a single 
map for your selected values of p and H. Your simulations will comprise only one 
combination of p and H, but comparisons with the results of other class members 
will allow an evaluation of the full factorial experiment for multiple values of p 
and H.

 1. The files needed for this exercise are in the subdirectory Exercise 3, including a 
script file for generating a multifractal map (see multifract.scr for map parame-
ters used in this simulation). Open this script file and change the neighborhood 
rule to the one assigned by your last name in the above exercise. Save this modi-
fied file. Only a single execution of Qrule is needed using the multifract.scr 
script file.

 2. Use your version of multifract.scr to generate a multifractal map with Qrule 
(HINT: it will be very convenient to copy QruleV4.exe to this subdirectory).

 3. Rename all resulting files from Qrule (e.g., rulerun.log to rulerun.mf.log, etc.) 
before running Qrule again.

 4. We’ll next use R to compare results of this map with a random map with the 
same probabilities. Copy the patch file from the previous exercise, patch_cfd.
ran55.dat, to this directory.

 5. Open R, then open the file Qcfd.R in the New script dropdown option under File 
menu. Reset to the proper directory in the setwd command of Qcfd.R, and run 
the first part of this program in R (through to the “STOP” comment). The subse-
quent statistical tests listed in this script (which you may wish to run, but are not 
required to do) will only work for data sets with one iteration.

 6. Copy the plot of the cumulative frequency distributions here.

Q10  What is the value of “Sav” for the random and multifractal case? What differ-
ences do you see in the cumulative frequency distributions (CFDs) for the 
random and mulitfractal maps? (HINT: Compare values on the X-axis for the 
1, 5, 50, 95, and 99 percentiles shown on the Y-axis)
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Q11  What effect does the H parameter have on the patterns produced in the multi-
fractal maps? (HINT: multiple runs of Qrule will be necessary to answer this 
question).

Q12  What will happen if you rerun the mulitfractal case with H = 0.9? (Those that 
are ambitious might try it).

Q13  What is the advantage of using the cumulative frequency distribution over 
simple landscape metrics?

Q14  How does the neighborhood rule affect the differences between random and 
multifractal maps (HINT: this requires comparison of your results with those 
from the other end of the alphabet)?

EXERCISE 4: Neutral Models and Actual Landscapes

One use of neutral landscape models is to produce multiple maps that capture spa-
tial attributes of a real landscape so that the effect of patterns on processes of inter-
est can be evaluated. For example, one may wish to generate spatially neutral maps 
that have a particular habitat amount and level of spatial autocorrelation that is 
based on an actual landscape. Gergel (2002) used this approach to generate repli-
cate floodplain landscapes that had set proportions and spatial autocorrelation in 
different elevation classes. These neutral landscapes then provided the foundation 
for modeling effects of flooding on nitrogen processing (Gergel et al. 2005). This 
exercise will compare an actual landscape with random and multifractal neutral 
landscape models.

 1. The “actual landscape” is an image derived from Landsat (30 m resolution) of 
Antietam, Maryland and rescaled to 120 m resolution to reduce map size and 
computational expense. This map (anti_128.map) has 128 rows and columns 
and 4 land-cover types. The script file for map analysis (anti_128.scr) provides 
the necessary input to Qrule. Run this script file by typing:

 QruleV4.exe<anti_128.scr  

 2. Rename files as you have done before.
 3. We would like to compare the patterns in this map with a simple random map 

and with a multifractal map. If your last name begins with letters in the range 
A–L, then you will make a random vs. actual landscape comparison. Otherwise, 
you will compare a multifractal map with the actual landscape.

 4. The maps you will generate should have the same number of habitat types and 
values of p as the actual landscape. For the random map, this means you must 
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specify p for each habitat type based on the Qrule analysis of the Antietam 
map (step 1). For the multifractal maps, you must also select values of H such 
that your neutral landscape maps have similar levels of habitat clumping. 
Create the appropriate script file for your case, using the same values of p that 
are in the runrule.anti.log file. Save the files produced by appropriately renam-
ing of each.

 5. You decide how best to compare your neutral maps with the actual landscape.

Q15  List the script file that you used to generate a neutral model for this exercise.

Q16  What metrics are the same, what metrics differ? What differences are statisti-
cally significant (i.e., the metric value for the actual landscape lies outside the 
range in the neutral landscape model) or would be ecologically important?

Q17  Given what you have learned about simple random maps and multifractal 
maps, are there particular situations in which one or the other might be the 
most appropriate neutral model? Would you ever expect a real landscape to 
have random spatial patterns? Explain your reasoning.

Q18  Develop a question from your own research that could be answered by using 
Qrule and an NLM approach. Provide the rationale for your question (why is 
it interesting and important?), explain how you would use Qrule to answer 
your question (i.e., design your simulation experiment), and describe how you 
would evaluate the results. If you have more time for the assignment, you can 
even carry out your study!

 CONCLUSIONS

Neutral landscape models will continue to play an important role in ecological stud-
ies that seek to understand the effects of landscape composition and configuration 
on ecological processes. NLMs are useful for determining the extent to which land-
scape metrics deviate from some theoretical expectation and for studies of how 
ecological processes respond to variation in landscape structure (With and King 
1997). NLMs are also important for evaluating the statistical behavior and interpret-
ability of landscape metrics (e.g., Wang and Malanson 2007); any newly introduced 
metric should be fully evaluated by applying it to a suite of neutral landscape mod-
els in which p and H are varied. The tools introduced here can be used in a variety 
of different contexts. However, it is important to remember that NLMs do not rep-
resent actual landscapes (and were never expected to do so), rather, they provide a 
standard against which actual landscapes may be compared, and provide a baseline 
against which the effects on processes can be evaluated.
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Chapter 7
What Constitutes a Significant Difference 
in Landscape Pattern?

Tarmo K. Remmel and Marie-Josée Fortin

OBJECTIVES

Characterizing landscape spatial structure can provide insights about the underlying 
mechanisms that generate pattern. Quantifying spatial structure enables analysis of 
landscape change over time as well as comparisons among different locations. Although 
numerous landscape metrics (LMs) exist to quantify spatial structure and characterize a 
landscape, how do we know when two landscapes significantly differ? As a single land-
scape represents only one replicate, its metrics are not statistics; thus, testing for differ-
ences between two landscapes becomes difficult. To address this problem, randomization 
procedures can help assess statistical significance using simulation approaches that 
assess whether the observed spatial structure could have occurred by chance alone. 
In this chapter, exercises will allow students to accomplish the following objectives:

 1. Perform significance tests of landscape metrics based on a randomization proce-
dure using a simulation model;

 2. For one landscape, assess whether LM values are significantly different than 
those from landscapes of similar class proportions and spatial autocorrelation;

 3. Determine where an LM value falls within its potential distribution, after con-
trolling for class proportions and spatial autocorrelation;

 4. Evaluate the statistical differences of LM values from two landscapes; and
 5. Graphically produce, present, and discuss results in an R software environment.

Exercise 1 uses a simple, simulated binary landscape to explore null hypothesis 
 testing, whereas Exercise 2 addresses statistical significance for more than one 
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landscape. In Exercise 3, an applied example is explored within the context of mak-
ing landscape restoration decisions. All of our implementation, analysis, graphics, 
and exercises are produced within the R statistical software environment (R: A lan-
guage and environment for statistical computing. R Foundation for Statistical 
Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org/, 
2010) and students are provided with all coding and files needed (from the book 
website). This lab requires installation of R (or R Studio) as well as loading the fol-
lowing libraries (SDMTools, fields). Some basic familiarity with R is helpful for 
completing this lab, and knowledge of concepts from Chapter 5 is assumed. Where 
relevant, advice is provided for adapting the code to the user’s own research.

 INTRODUCTION

Landscape metrics describe and quantify the spatial pattern of categorical landscape 
data (McGarigal 2002, as well as Chapters 4 and 10). LMs are often used to compare 
spatial patterns of landscapes from distinct regions or within the same landscape 
through time. However, such comparisons based on LM are valid however, only 
when the proportions, pi, of each category, i, are the same between the landscapes 
(Turner et al. 2001). The reason for comparing only landscapes with similar values of 
p is because of the strong relationship between landscape metrics and the proportion 
of the landscape occupied by that cover type.

Another key factor affecting spatial pattern is spatial autocorrelation (i.e., values 
at nearby locations are more similar than by chance; Fortin and Dale 2005) which 
you explored in Chapter 5. Clumped, aggregate patterns occur when correlations 
are positive whereas dispersed, disaggregate patterns occur when correlations are 
negative. Spatial autocorrelation is also confounded with class proportions. As a 
result, in comparisons among landscapes of different proportions, one cannot often 
determine whether the differences are due to class proportions, spatial autocorrela-
tion, or some other process (e.g., fragmentation).

Prior to comparing LM among landscapes, one should first determine whether 
the observed LM values for a single landscape could have occurred by chance. This 
is not a trivial task because probability distributions of LM are largely unknown, and 
cannot be analytically derived, especially when both proportion and spatial autocor-
relation need to be accounted for (Fortin et al. 2003; Remmel and Csillag 2003). As 
a result, the distributions of LM must be constructed empirically using randomiza-
tion and simulation procedures. The lack of analytically derived distributions in 
ecological studies often requires computer-intensive randomization procedures, 
such as resampling, Monte Carlo methods, or bootstrapping (Manly 2006; Fortin 
et al. 2012), in order to perform significance testing.

While randomization procedures are very flexible methods, they are usually 
based on the assumption of data independence. In a spatial context, this indepen-
dence assumption corresponds to a complete spatial randomization (CSR), where 
the values of a variable are equally likely to be distributed over the entire area. In the 
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presence of spatial autocorrelation, this assumption is unlikely to be valid, and hence 
a null distribution should be generated using stochastic simulation approaches. 
Stochastic simulations can produce highly replicated landscapes with known levels 
of spatial autocorrelation and class proportions in order to generate the empirical 
distributions needed for significance testing (Fortin et al. 2003; Remmel and Csillag 
2003). Once you complete the lab, we recommend you re-read this introductory 
material to help solidify these concepts and new terminology.

For simplicity, the examples we use in this lab are binary landscapes, and their 
proportions and spatial structure affect the values of the LM (Proulx and Fahrig 
2010). Figure 7.1 (after Remmel and Csillag 2003) illustrates the dependence 
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Figure 7.1 Four simulated landscapes (64 × 64 pixels) with specified class proportions and 
degrees of spatial autocorrelation. Landscapes have the following class-level proportions: in the 
top row Black = 0.40 and White = 0.60; while in the bottom row Black = 0.60 and White = 0.40. The 
levels of spatial autocorrelation are fixed: random (ρW = 0.00) in the left column and distinct 
patches (ρW = 0.49) in the right column

7 What Constitutes a Significant Difference in Landscape Pattern?



108

between p and spatial autocorrelation: when the proportion increases, the degree of 
spatial autocorrelation increases as well; therefore, LM should be compared between 
landscapes with similar proportions occupied by the category of interest.

 Simulated Landscapes: A Stationary Stochastic Random Field Simulator

Several algorithms exist to generate binary landscapes with a known degree of 
spatial autocorrelation (Hargrove et al. 2002; Fortin et al. 2003; Remmel and 
Csillag 2003; Gardner and Urban 2007; as well as Chapter 6 in this book) but none 
exist (with the same degree of control) for landscapes with multiple categories, due 
to the inherent complexity of spatial patterns possible. Hence, the exercises in this 
chapter focus only on binary landscapes and significance testing of class-level 
metrics.

We implement conditional autoregressive (CAR) simulations (Cressie 1993) 
for generating null distributions of binary (two land cover classes: black and white), 
isotropic (the spatial autocorrelation parameters do not vary with direction), sta-
tionary (the spatial autocorrelation parameters are constant across the entire map) 
landscapes that rely on the stochastic random field model (Remmel and Csillag 
2003). The CAR model utilizes a covariance matrix, C:

 
C I W

1
= -( )rr --

 

where I is an identity matrix (a matrix of all zeros except for the diagonal that is 
filled with ones), and W is a connectivity matrix that defines which cells are consid-
ered neighbors (nearest neighbors = 1) or not (=0). Also, ρ is the spatial autocorrela-
tion parameter, similar to Moran’s I (Moran 1950) that ranges from −1 (repulsion) to 
1 (attraction). Our implementation ranges from complete spatial randomness 
(ρW = 0.00) to highly spatially autocorrelated, where ρ approaches 1. For continuous 
data, ρ can be estimated using Whittle’s algorithm (Whittle 1954) which is explained 
in more detail in Appendix A. As this correction factor requires intensive computa-
tion, it has already been performed and stored as a lookup table in the provided 
Remmel–Fortin code as object DIFF50 and is used internally when estimating ρW.

 Landscape Metrics

The LM computed in the provided Remmel–Fortin code are class-level metrics 
(Table 7.1) from FRAGSTATS (McGarigal and Marks 1995) and implemented 
within the SDMTools (VanDerWal et al. 2011) library in R. Here, numbers 1–38 to 
refer to specific class metrics corresponding to the black category, with 39–76 for 
white as computed by SDMTools (Table 7.1). All LMs, where required, are com-
puted using nearest neighbors (4-neighbor rule).

T.K. Remmel and M.-J. Fortin
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Table 7.1 Explanation of 38 class-level landscape metrics

Low High Metric acronym Definition of class-level metric

1 39 class Particular patch type from the original input data
2 40 n.patches Number of patches of a particular patch type or in 

a class
3 41 total.area Sum of the areas (m2) of all patches of the 

corresponding patch type
4 42 prop.landscape Proportion of the total landscape represented by 

this class
5 43 patch.density Numbers of patches of corresponding patch type 

divided by total landscape area (m2)
6 44 total.edge Total edge length of a particular patch type
7 45 edge.density Edge length on a per unit area basis that facilitates 

comparison among landscapes of varying size
8 46 landscape.shape.

index
A standardized measure of total edge or edge 
density that adjusts for the size of the landscape

9 47 largest.patch.
index

Largest patch index quantifies the percentage of 
total landscape area comprised by the largest patch

10 48 mean.patch.area Average area of patches
11 49 sd.patch.area Standard deviation of patch areas
12 50 min.patch.area Minimum patch area of the total patch areas
13 51 max.patch.area Maximum patch area of the total patch areas
14 52 perimeter.area.

frac.dim
Perimeter-area fractal dimension equals 2 divided 
by the slope of regression line obtained by 
regressing the logarithm of patch area (m2) against 
the logarithm of patch perimeter (m)

15 53 mean.perim.area.
ratio

Mean of the ratio patch perimeter. The perimeter- 
area ratio is equal to the ratio of the patch 
perimeter (m) to area (m2)

16 54 sd.perim.area.ratio Standard deviation of the ratio patch perimeter
17 55 min.perim.area.ratio Minimum perimeter area ratio
18 56 max.perim.area.

ratio
Maximum perimeter area ratio

19 57 mean.shape.index Mean of shape index
20 58 sd.shape.index Standard deviation of shape index
21 59 min.shape.index Minimum shape index
22 60 max.shape.index Maximum shape index
23 61 mean.frac.dim.index Mean of fractal dimension index
24 62 sd.frac.dim.index Standard deviation of fractal dimension index
25 63 min.frac.dim.index Minimum fractal dimension index
26 64 max.frac.dim.index Maximum fractal dimension index
27 65 total.core.area Sum of the core areas of the patches (m2)
28 66 prop.landscape.core Proportional landscape core
29 67 mean.patch.core.

area
Mean patch core area

30 68 sd.patch.core.area Standard deviation of patch core area

(continued)
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 Data Input Format

Currently, the Remmel–Fortin code is constrained to square binary landscapes hav-
ing 64 × 64 pixels. While computation for larger landscapes is possible, processing 
times become prohibitive for demonstration purposes. Remember that some possi-
ble bias may result in computations for some LMs due to constraints on patch size 
using a 64 × 64 landscape. If importing your own landscapes for future analyses, 
ensure that all landscape representations are in numerical matrix format.

 Step 0: Initialize Workspace by Loading Libraries, Demo Data,  
and Lookup Tables

If the package SDMTools has not been downloaded and installed on your com-
puter, you will need to install it from the Comprehensive R Archive Network 
(CRAN) along with all dependencies. Then, load the library and source the code 
provided for this chapter.

> library(SDMTools) 
> load("Remmel-Fortin.save")

Table 7.1 (continued)

Low High Metric acronym Definition of class-level metric

31 69 min.patch.core.area Minimum patch core area
32 70 max.patch.core.

area
Maximum patch core area

33 71 prop.like.
adjacencies

Calculated from the adjacency matrix, which 
shows the frequency with which different pairs of 
patch types (including like adjacencies between the 
same patch type) appear side-by-side on the map 
(measures the degree of aggregation of patch types)

34 72 aggregation.index Computed simply as an area-weighted mean class 
aggregation index, where each class is weighted 
by its proportional area in the landscape

35 73 lanscape.division.
index

Based on the cumulative patch area distribution 
and is interpreted as the probability that two 
randomly chosen pixels in the landscape are not 
situated in the same patch

36 74 splitting.index Based on the cumulative patch area distribution 
and is interpreted as the effective mesh number, or 
number of patches with a constant patch size when 
the landscape is subdivided into S patches, where 
S is the value of the splitting index

37 75 effective.mesh.size Equals 1 divided by the total landscape area (m2) 
multiplied by the sum of patch area (m2) squared, 
summed across all patches in the landscape

38 76 patch.cohesion.
index

Measures the physical connectedness of the 
corresponding patch type

T.K. Remmel and M.-J. Fortin
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 EXERCISES

EXERCISE 1: Analysis of a Single Landscape

Using a single landscape, one can assess the significance of observed LMs relative 
to expectations based on null empirical distributions. The null hypothesis would be 
that the LM value could occur due to random chance, given the composition and 
configuration of that landscape. The expected distribution (and its variability) is 
fabricated by simulating landscapes with identical extent, spatial resolution, compo-
sition, and configuration, from which LM values would be quantified. If the observed 
LM falls within either tail of this distribution, it is then considered significantly dif-
ferent than what could be expected by chance.

In this exercise, you will compute a series of landscape metrics (see Table 7.1) on 
a landscape (represented as the demoimage3 object). You will then determine 
whether observed LM values are significantly different from those based on null 
empirical distributions generated using the CAR simulator. We use n = 100 simula-
tions to aid the feasibility of teaching as well as precedence (Remmel and Csillag 
2003); though, this value could be adjusted in the code.

Use the following steps:

Step 1: Plot the Original Landscape Dataset

> plot.new()
> par(pty="s", mfrow=c(1,1))
> imaks(demoimage3)
> title("demoimage3")

Step 2: Compute Parameters from the Observed Binary Landscape

Two parameters need to be estimated from the input binary landscape data:

• The proportion of each category (black/LOW, white/HIGH)
• The estimated degree of spatial autocorrelation (recall the Whittle’s algorithm)

Then, these two estimated parameters are used to generate the empirical distribu-
tions for 38 class-level metrics for both classes using n = 100 landscapes.

> result1 <- singlemap(IMG = demoimage3, VERBOSE = TRUE, reps = 100)

Notice the total number of landscape pixels is 4096 (64 × 64 pixels = 4096) or alter-
natively 2458 Black + 1638 White = 4096 total pixels. The proportion of black pixels 
is (2458/4096) = 0.60 and the corresponding proportion of white pixels is 
(1638/4096) = 0.40. The Whittle estimate of rho (ρW = 0.00) is zero, or very close to 
it, indicating the absence of spatial autocorrelation.
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Step 3: Assess the Significance of Each Class-Level Metric

The significance of each metric can be assessed by computing its associated prob-
ability. In other words, the number of times the observed metric is greater or smaller 
than the empirical null distribution. The smallest probability that can be obtained is 
0.01. Here, one can assess the significance of the LM by comparing the computed 
probability, P, against α = 0.05. These results are returned with the singlemap() 
function call above.

Next, plot the observed metric values (as indicated by a red dot) for a select 
 subset of the distributions of metrics (as specified by 

"metrics = c(2,7,18,20,21,22)"; here 2 = LOW.n.patches, 7 = LOW.edge.
density, 18 = LOW.max.perim.area.ratio, 20 = LOW.sd.shape.index, 21 = LOW.
min.shape.index, 22 = LOW.max.shape.index).

NOTE: see Table 7.1 for how LMs link to these short-hand numbers. Recall that 
black, B, or LOW refers to the lower value of the two categories, and white, W, or 
HIGH for the other.

> singleplotter(data=result1, img = demoimage3, metrics=c 
(2,7,18,20,21,22), rows=2, cols=3, addactual=TRUE, colour=TRUE)

If addactual = FALSE, then the red dot (indicating the original LM value 
being analyzed, shown within the simulated distribution) will not be added to each 
boxplot.

NOTE: Due to the stochastic nature of this approach, your results may differ from 
this, as well as differ from your classmates. Furthermore, "NA" in the results below 
indicates all simulated values were identical.

Actual Metric Value ( LOW.n.patches ):  3 
88 higher values, 4 lower values, and 8 identical values as the map.
Probability of map having a value <= to expectation: P=0.9600
Probability of map having a value >= to expectation: P=0.1200

Actual Metric Value ( LOW.edge.density ):  0.9897461 
25 higher values, 73 lower values, and 2 identical values as the map.
Probability of map having a value <= to expectation: P=0.2700
Probability of map having a value >= to expectation: P=0.7500

Actual Metric Value ( LOW.max.perim.area.ratio ):  4 
0 higher values, 5 lower values, and 95 identical values as the map.
Probability of map having a value <= to expectation: P=0.9500
Probability of map having a value >= to expectation: P=1.0000

Actual Metric Value ( LOW.sd.shape.index ):  11.10245 
5 higher values, 95 lower values, and 0 identical values as the map.
Probability of map having a value <= to expectation: P=0.0500
Probability of map having a value >= to expectation: P=0.9500
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Actual Metric Value ( LOW.min.shape.index ):  1 
1 higher values, 0 lower values, and 99 identical values as the map.
Probability of landscape having a value <= to expectation: P=1.0000
Probability of landscape having a value >= to expectation: P=0.9900

Actual Metric Value ( LOW.max.shape.index ):  20.23 
22 higher values, 78 lower values, and 0 identical values as the map.
Probability of map having a value <= to expectation: P=0.2200
Probability of map having a value >= to expectation: P=0.7800

The probabilities above indicate how likely the observed map LM is relative to 
the simulated values (the null, empirical distribution). Two probabilities are given. 
First shown is the probability that the map value is less than or equal to the expected 
value obtained from the empirical null distribution. Second is the probability that 
the map value is greater than or equal to the expected value obtained from the 
empirical distribution. These values are computed as (e.g., LOW.n.patches): 
P = (88 + 8)/100 = 0.9600, where the 8 is the number of simulated values equal to the 
observed one, and 88 is the number of simulated values greater than the observed 
one. Thus, P = 0.9600 that the observed LM value for the map is less than what 
would be expected from the empirical distribution (because there are many more 
simulated landscapes that had higher values).

These probabilities can be considered for one- or two-tailed tests, depending on 
the context of the question posed. If the question asks simply whether an observed 
LM computed for a map differs from an expected value, the test would be two-
tailed, and it is possible to specify a probability level that identifies how far in the 
tail of the distribution the observed LM resides. However, if the question posed 
implies directionality (e.g., is this landscape more fragmented than expected?), the 
test would be one-tailed. Thus, the probability that of the LM is in the upper-tail 
would be assessed because the specified LM measuring fragmentation would have 
this as an implied directionality.

Step 4: Explore Additional Metrics

Try this exercise using different class-level metrics (e.g., select five new class-level 
LMs; see Table 7.1) and different landscape datasets (e.g., demoimage1, dem-
oimage2, demoimage3, and demoimage4).

Q1  Are the class-level LMs significantly different than expected under the null 
hypothesis of random chance, given null empirical distributions constructed 
based on simulations with identical composition and spatial autocorrelation? 
You will need to run singlemap() and singleploter() functions for 
each landscape you wish to assess (Table 7.2).

Q2  Are the probabilities different than one would expect given how the original 
data were generated (see Figures 7.1 and 7.2)?
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Q3  How do the probabilities differ from what one would expect based on the 
 proportion of the classes in the landscapes (e.g., demoimage1 and 
 demoimage2 or demoimage3 and demoimage4) versus the degree of spa-
tial autocorrelation (e.g., demoimage1 and demoimage3 or demoimage2 
and demoimage4) (see Figure 7.1)?

Table 7.2 Sample LM results for demoimage3 with actual values and then probabilities in 
parentheses. The probabilities shown for demoimage3 are probabilities of having an LM value 
less than or equal to expectations. Entries for demoimage2 are to be filled by students

LM demoimage3 demoimage2

Number of patches 3 (0.9600)
Edge density 0.989746 (0.2700)
Maximum perimeter/area ratio 4 (0.9500)
Standard deviation shape index 11.10245 (1.0000)
Minimum shape index 1 (1.0000)
Maximum shape index 20.23 (0.2200)

1 16 32 48 64

64
48

32
16

1

demoimage3

Figure 7.2 Plot of landscape demoimage3 with two categories (LOW in black and HIGH in 
white) and 64 × 64 pixels
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EXERCISE 2: Comparing Two Different Landscapes

For two different landscapes (either the same landscape at two different time peri-
ods, or two landscapes at different locations), it is also important to assess whether 
observed LM values are similar based on null empirical distributions. The null 
hypothesis is that the mean expected LM value is equal to the same LM from a 
simulated landscape with identical extent, spatial resolution, composition, and 
 spatial autocorrelation. We will test the null hypothesis by assessing whether distri-
butions for the specified LM overlap by a specified amount; if the overlap is large, 
the two values are not considered significantly different.

In this exercise, you will compute a series of landscape metrics (Table 7.1) on 
two landscapes (demoimage2 and demoimage3) to determine whether the spa-
tial structures of the landscapes are similar or not. You will learn how to determine 
whether or not class-level metrics from two landscapes are significantly different 
based on expectations from null empirical distributions (n = 100 simulated land-
scapes) generated using the CAR simulator. To do so, perform the following steps.

Step 1: Plot the Two Original Landscape Datasets (Figure 7.3)

> plot.new()
> par(pty="s", mfrow=c(1,2))
> imaks(demoimage2)
> title("demoimage2")
> imaks(demoimage3)
> title("demoimage3")

1 16 32 48 64

64
48

32
16

1

demoimage2

1 16 32 48 64

demoimage3

Figure 7.3 Plot of landscapes demoimage2 and demoimage3
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Step 2: Compute Parameters for Each Observed Binary Landscape

As in the first exercise, it is necessary to estimate pattern parameters for both input 
maps: (1) the proportion of each category (black, white), and (2) the estimated 
degree of spatial autocorrelation based on Whittle’s algorithm (as in Appendix A). 
Then, the two estimated parameters are used to generate the empirical distributions 
for all the 38 class-level metrics for both categories using 100 simulated landscapes 
based on the CAR simulator (as described earlier).

> result1 <- singlemap(IMG = demoimage3, VERBOSE = TRUE,  
reps = 100)

You should produce the same results here as in Step 2 of Exercise 1 (see explanation 
in Exercise 1).

> result2 <- singlemap(IMG = demoimage2, VERBOSE = TRUE,  
reps = 100)

Step 3: Assess the Significance of Each Class-Level Metric

The significance of each class-level metric can be assessed by computing its proba-
bility (i.e., the number of times the observed class-level metric is greater or smaller 
than the expected metric under the empirical null distribution based on 100 repli-
cates). Plot the observed class-level metrics (as indicated as a red dot) and a selected 
subset of the empirical distributions of the class-level metrics indicated as: 
“metrics =c(2,7,18,20,21,22)” where 2 = LOW.n.patches, 7 = LOW.edge. 
density and 18 = LOW.max.perim.area.ratio, 20 = LOW.sd.shape.index, 21 = LOW.
min.shape.index, 22 = LOW.max.shape.index).

> singleplotter(data=result1, img=demoimage3, metrics=c(2,7,18, 
20,21,22), rows=2, cols=3, addactual=TRUE, colour=TRUE)
> singleplotter(data=result2, img=demoimage2, metrics=c(2,7,18, 
20,21,22), rows=2, cols=3, addactual=TRUE, colour=TRUE)

For explanation of these results, see Step 3 in Exercise 1.

Step 4: Plot Side-By-Side Boxplots

For comparison purposes, it is useful to produce side-by-side boxplots for each 
metric, contrasting the range of variability between map pairs. The range of LM 
variability comes from the n simulated landscapes, forming the empirical null dis-
tribution and metric expectation.
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> doubleplotter(data1 = result1, data2 = result2, img1 = demoimage3, 
img2 = demoimage2, metric = 8)
> doubleplotter(data1 = result1, data2 = result2, img1 = demoimage3, 
img2 = demoimage2, metric = 15)

Step 5: Assess the Significance of Each Class-Level Metric

Assess whether there is a significant difference for each class-level metric for each 
observed landscape and interpret the results to determine whether the confidence 
intervals of each metric are overlapping. This can be most easily determined visually 
by looking at the boxplots for overlap of the notched region, but could be done numer-
ically by extracting the simulated values stored in the result objects (where exact value 
ranges of the notches could be computed and compared) (Figures. 7.4 and 7.5).

Step 6: Additional Lab Exercises

Try this exercise using different class-level metrics (e.g., select five new class-level 
LMs; see Table 7.1) and different landscape datasets (e.g., demoimage1, dem-
oimage2, demoimage3, and demoimage4).
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Figure 7.4 Boxplots of null empirical class-level metrics based on 100 simulated landscapes. The 
observed LM value is indicated by red dot
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Q4  Are the class-level LMs significantly different than expected under the null 
hypothesis of random chance, given the null empirical distributions constructed 
based on simulations with identical composition and spatial autocorrelation? 
You will need to run singlemap() and singleplotter() functions for 
each landscape you wish to assess. This is done individually for each landscape 
selected; when comparing two landscapes, it must be done individually for each 
of these two landscapes.

Q5  Are the probabilities different than one would have expected given how the 
original data were generated (see Figure 7.1)?

Q6  How do the probabilities differ from how one would expect according to the 
proportion of the classes in the landscapes (e.g., demoimage1 vs. demoim-
age2, or demoimage3 vs. demoimage4) compared with the degree of spa-
tial autocorrelation (e.g., demoimage1 vs. demoimage3, or demoimage2 
vs. demoimage4) (see Figure 7.1)?

Q7  For each pair of landscapes compared, and each LM you are interested about, 
are the landscapes significantly different based on the overlap of the boxplots 
(as was illustrated in Figure 7.5)?

EXERCISE 3: Determine a Landscape’s Position Within the Distribution 
of Possible Class-Level Metric Values

Landscape pattern assessment can help inform an intervention or manipulation 
for management purposes. Restoring (or enhancing or adjusting) landscape 
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LOW.landscape.shape.index LOW.mean.perim.area.ratio

Figure 7.5 Boxplots of the class-level metrics for the two landscapes (Map 1 = demoimage3 
and Map 2 = demoimage2). Left panel shows confidence intervals for the landscape shape index 
and right panel shows mean perimeter area ratio. When the boxplot notches of two landscapes do 
not overlap, one can conclude that the two medians differ (Chambers et al. 1983)
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spatial structure may be needed to influence provisioning of ecosystem services. 
In the context of conservation, one might wish to reduce fragmentation to help 
maintain biodiversity. To accomplish either, one must first determine the extent to 
which changing composition vs. spatial autocorrelation might change LM values. 
After deciding on one or more useful, robust, and informative LM(s), the next 
step would be to determine where the LMs reside within their null empirical 
distributions.

The goal of this third exercise is to determine where the observed landscape 
exists within the class-level metric space, given its proportion and estimated degree 
of spatial autocorrelation. Observing LM values among the joint influences of com-
position and configuration permits us to identify which aspect of spatial pattern 
(when manipulated) would most efficiently lead to the desired LM value change. To 
do so, perform the following steps.

Step 1: Perspective Plots of Class LM Median and Variance

Begin by producing a perspective plot for the median of a selected LM as it varies 
with class proportion and degree of spatial autocorrelation. The example provided 
has prop = 0.72 and ρW = 0.49 relative to a given class-level metric; the median value 
is based on 100 simulated landscape replicates.

> tempmed <- apply(surfaces[9,,,], MARGIN=c(1,2), median)
> persp(tempmed, ticktype="detailed", cex.axis=0.7, zlab="Metric", 
ylab="Proportion", xlab="Rho", theta=-45)

The variance of this surface can also be computed to indicate the amount of vari-
ability at each point on the surface for a selected class LM along the identical axes 
of proportion of the category and the degree of spatial autocorrelation. The example 
below is for the ninth class metric: largest patch index for the black (or LOW) 
category

> tempvar <- apply(surfaces[9,,,], MARGIN=c(1,2), var)
> persp(tempvar, ticktype="detailed", cex.axis=0.7, zlab="Metric", 
ylab="Proportion", xlab="Rho", theta=-45)

Step 2: Drop a Point Onto the Perspective Plot Indicating Observed 
Landscape’s Position

Draw the perspective plot with a point indicating the location of a specific propor-
tion and ρ relative to a single metric (Figure 7.6).

> surfplot(surfaceobj=tempmed, prop=0.72, rho=0.49, colour=TRUE, 
drop=TRUE, cross=FALSE)
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Figure 7.6 Surface response for class-level metric (z-axes; left panel: median, stored in tempmed; 
right panel: variance, stored in tempvar) according to proportion and spatial autocorrelation. 
These indicate how the expected value (median) and the variability (variance) of the largest patch 
index for the black (or LOW) category behave as composition and configuration parameters are 
incrementally changed

Step 3: Produce Boxplots of Surface Variability Along Axes Crossing 
Through the Observed Landscape Position Within the Perspective Plot

Include boxplots for Step 1 at the level of the observed proportion and spatial 
 autocorrelation (ρW) axes on the surface to depict the variability (to do so set 
cross=TRUE).

> surfplot(surfaceobj=tempmed, prop=0.72, rho=0.49, colour=TRUE, 
drop=TRUE, cross=TRUE)

Step 4: Perspective Plot with Both Median and Variance of Selected LM

Start by plotting the perspective plot of the median value of the class-level metric. 
This surface shows the variance (in color) indicating the variability at each point on 
the surface along axes of proportion and the degree of spatial autocorrelation (ρW).

The example below (Figure 7.7) demonstrates the ninth class metric: largest 
patch index for the LOW category. To color the median surface based on the vari-
ance values, the library fields must be installed and loaded along with 
dependencies.

> library(fields)
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Then, the plot can be produced:

> drape.plot(seq(0.1,0.9,by=0.1), seq(0,0.2499999, by=0.2499999/10)*4, 
tempmed, tempvar, ticktype="detailed", col=topo.colors(50), theta=-25, 
phi=15, cex.axis=0.5, xlab="Proportion", ylab="Rho", zlab="Metric")

Step 5: Additional Lab Exercises

Try this exercise using different class-level metrics (e.g., select five new class-level 
LMs; see Table 7.1) and different landscape datasets (e.g., demoimage1, dem-
oimage2, demoimage3, and demoimage4).

Q8  Given the observed class-level LM value (i.e., the red dot in Figure 7.8) for the 
largest patch index within the context of all possible values of composition and 
spatial autocorrelation (Figures 7.8 and 7.9), what strategy (or strategies) would 
you recommend to reduce fragmentation (i.e., to increase the largest patch 
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Figure 7.7 Surface response of the class-level metric median according to incremental variation 
of proportion and spatial autocorrelation for the category largest patch index as computed for the 
LOW value. The dropped red point indicates the position of the observed landscape within the 
range of variation that varying proportion and spatial autocorrelation can produce
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index value)? Would it be easier to adjust the proportion or the level of spatial 
autocorrelation to achieve the goal? Imagine adding or removing land cover 
(either the white or black category) or simply rearranging them. Along which 
axis (composition or spatial autocorrelation) would LM values change more 
rapidly? How much change would be required to effect a 0.1 change to the LM 
value?

Q9  Repeat the previous question by examining another LM. You will need to begin 
at step 1 and adjust the value for the LM from 9 to the metric you select 
(Table 7.1).
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left panel as in Figure 7.6; middle panel: boxplot across spatial autocorrelation for the observed 
proportion level; right panel: boxplot across proportion level for the observed degree of spatial 
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Q10  Note and describe how the generated surfaces differ (along with the cross-
sectional boxplots). Indicate the easiest way to decrease that LM value; would 
it be easier to alter composition or spatial autocorrelation?

 CONCLUSIONS

While landscape metrics have been computed for decades, a major issue revolves 
around the difficulty in testing their significance. By using a simulation approach as 
presented here, it is now possible to assess whether or not the observed spatial struc-
ture of the landscape could have occurred by chance alone. Assessing the signifi-
cance of LM is a major step in relating spatial structure to underlying process(es) 
that generated it. Furthermore, the knowledge of where in the range of proportion 
and spatial autocorrelation observed LM values lie can be used to propose restora-
tion strategies for conservation purposes.
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Figure 7.9 Class-level metric surface (as in Figure 7.8) combining the median LM value with the 
variability shown in colour across the ranges of proportion and configuration
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 APPENDIX A. EXPLANATION OF WHITTLE’S 
ALGORITHM (WHITTLE 1954)

For continuous data, ρ can be estimated using Whittle’s algorithm (Whittle 1954) 
that extends the convention of time-series analysis to spatial processes reflected as 
collections of linear transects in geographic space. There is however the chance of 
bias in the estimated value of spatial autocorrelation when applying this algorithm 
to categorical data. This bias varies according to the composition, pi, such that 
around an even proportion of two classes, the bias is relatively small; however, it can 
be quite strong when the proportions differ greatly. Therefore, a correction factor 
needs to be applied to adjust the spatial autocorrelation estimate, resulting in the 
“true” ρW for categorical data. This true ρW needs to be multiplied by 4 to compen-
sate for the isotropy of the algorithm and to scale the estimation to a range between 
0 and 1. As this correction factor requires intensive computation, it has already been 
performed and stored as a lookup table in the provided Remmel–Fortin code as 
object DIFF50 and is used internally when estimating ρW.
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Part III
Landscape Change and Disturbance

This module provides a compelling sequence of activities designed to solidify your 
basic knowledge of landscape change by providing exposure to landscape models 
and advanced methods for analyzing disturbance mosaics. Chapter 8 presents a 
simple approach for Markov landscape change modeling with a well-loved “favorite” 
from the first edition. Use of the Markov.exe program (a stand-alone DOS window 
executable) still works well, and many students find it a quaint throwback; however, 
we now include additional (optional) capability using R software. Chapter 9 pres-
ents Harvest Lite, a fun simulation model allowing the user to explore the funda-
mentals of spatial modeling and sensitivity analysis with a forest harvest model that 
incorporates edge effects and forest recovery. Two new advanced labs explore new 
modes of examining landscape disturbance. Chapter 10 guides students through 
analyses of replicated landscapes across continental scales, which can improve 
comparative studies of landscape dynamics, with a crafty web interface for the 
METALAND tool. Lastly, Chapter 11 explores the rich mosaic of landscape patterns 
created by three different types of disturbance and contrasts categorical and continu-
ous measures of disturbance (i.e., landscape metrics and spatial statistics). Patterns 
produced by fire, insect outbreaks, and forest harvest are explored with the user-
friendly software package GS+, building on knowledge from prior chapters on spatial 
statistics and landscape metrics, but with the complexity and subtleties of realistic 
landscape data.
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Chapter 8
Introduction to Markov Models

Dean L. Urban and David O. Wallin

OBJECTIVES

Models of landscape change are important tools for understanding the forces that 
shape landscapes. One motivation for modeling is to examine the implications of 
extrapolating short-term landscape dynamics over the longer term. This extrapola-
tion of the status quo can serve as a frame of reference against which to assess 
alternative management scenarios or test hypotheses. There is a spectrum of ways 
to consider landscape change, ranging from simple and readily interpretable, to 
more realistic and less tractable. The goals of this lab are to:

 1. Provide an introduction to the mathematics of simple Markov models;
 2. Enable students to build a simple model of land use change based on transition 

probabilities;
 3. Explore the process of model creation, verification, and validation; and
 4. Encourage creative speculation as to how Markov models might be extended to 

incorporate more complex and realistic mechanisms of and constraints on land-
scape change.

In this exercise, you will build a simple model of landscape change, evaluate it, 
and use it as a point of departure to consider more realistic (but more complicated) 
models. Raster maps of Pacific Northwest forests are compared over three time 
periods to summarize the rates of transition between cover types. A simple model of 
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landscape change is built from these transition probabilities. Lastly, this model is 
projected forward in time to verify and validate the model. In order to complete this 
lab, you will need a PC, the program markov.exe, the landscape images (pnw72.
gif, pnw85.gif, pnw91.gif, and samp200.gif) and the accompanying data file 
(samp200) which can be obtained from the book’s website.

 INTRODUCTION

Perhaps the most fundamental observation on landscape change arises from mea-
surements of the state of a landscape at two time periods. For example, we might 
have land cover maps classified from satellite images obtained for two dates 10 years 
apart, and note that some of the cells (pixels) changed type over that time interval.

One way to summarize landscape change is to simply tally all the instances, 
on a cell-by-cell basis, in which a cell changed cover types over that time interval. 
A concise way of summarizing these tallies is a raw tally matrix, which for m cover 
types is an m x m matrix. The elements, nij, of the tally matrix tally the number of 
cells that changed from type i to type j over a time interval. A raw tally matrix is 
often converted into proportions by dividing each of the elements by the row total to 
generate a transition matrix P. The elements, pij, of the transition matrix P sum-
marize the proportion of cells of each cover type that changed into each other cover 
type during that time interval. The diagonal elements of this matrix, pii, are the 
proportions of cells that did not change.

While there are a variety of approaches to modeling landscape change (see 
Weinstein and Shugart 1983; Baker 1989; Sklar and Costanza 1991; Mladenoff and 
Baker 1999, for reviews), many of these begin with a tally matrix or the transition 
matrix P. Here, you will examine the simplest of such models based on a transition 
matrix. This simple model will serve as a point of departure for contemplation of 
more realistic but more complicated models.

 Markov Models

A first-order Markov model (Usher 1992) assumes that to predict the state of the 
system at time t + 1, one need only know the state of the system at time t. The heart 
of a Markov model is the transition matrix P, which summarizes the probability 
that a cell in cover type i will change to cover type j during a single timestep. The 
timestep is the interval over which the data were observed to change (i.e., the time 
interval of the two maps).

Markov models, while simple, have a number of appealing properties. In particu-
lar, they can be solved by iteration to project the state of the system. Writing the 
state of the system as a vector

 
x x x xt = [ ]1 2 3   (1)
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where xi is the proportion of cells in type i at time t, a Markov model is projected:

 x x Pt t+ =1  (2)

that is, the state vector post-multiplied by the transition matrix. The next projection, 
for time t + 2 is continued:

 x x P x PP x Pt t t t+ += = =2 1
2

 (3)

and in general, the state of the system at time t = t + k is given by:

 x x Pt k t
k

+ =  (4)

where xt is the initial condition of the map. Thus, the model can be projected into the 
future simply by iterating through the matrix operation (see Exercise 2 for details on 
how to do this manually).

The steady-state or equilibrium state of the system is given by the eigenvector 
of the transition matrix; thus, there is a closed-form solution to the model. Recall, 
the eigenvector of the matrix is defined such that the matrix multiplied by the eigen-
vector yields the vector again:

 
 x x P=  (5)

That is, the system does not change once it reaches this state. There are some com-
putational tricks for estimating steady-state solutions (Usher 1992), or you could 
use a math package (e.g., Mathmatica™, MatLab™) to do this. But for simple mod-
els, the solution often converges rapidly and you can estimate the solution simply by 
projecting the model a few times.

Graphical Representation. The model implied by the transition matrix P can also 
be represented as a graph (a “box-and-arrow” diagram). An example with three cover 
types could be illustrated as in Figure 8.1. Casual inspection of the graph reveals the 
direction of flow in the system, and suggests a succession from type 1, through type 
2 to type 3, with some recycling (possibly a disturbance) to the initial cover type.

Figure 8.1 A schematic box-and-arrow diagram of a transition matrix P with three cover types. 
The thickness of the arrows indicates the magnitude of the transition rates between the different 
cover types (the arrows for self-replacement are not shown). The diagram shows flow from cover 
type 1 to 2, to 3, with some recycling to previous cover types via disturbance

8 Introduction to Markov Models
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Model Projection. To explore a Markov model, it is initialized with a state vector 
and then projected for one or more timesteps. The vector of cover types produced at 
each iteration is the prediction of overall landscape composition for that timestep. 
In the following exercises, we will show you how this is accomplished.

 EXERCISES

 Modeling Landscape Change in the Pacific Northwest, USA

Much debate over the management of Pacific Northwestern (PNW) forests occurred 
in the early 1990s. The debate centered on the effects of intensive logging on old- 
growth forests and on old-growth-dependent wildlife species such as the northern 
spotted owl (Strix occidentalis) and the marbled murrelet (Brachyramphus marmo-
ratus) (Hansen et al. 1991; Ruggiero et al. 1991), primarily on U.S. Forest Service 
land. Since most of the old-growth on private lands was already gone, most of the 
old-growth harvested in the 1980s came from these federal lands (Harris 1984; 
Robbins 1988). By the mid-1990s, harvests were reduced by over 90% on federal 
lands relative to the peak harvests of the late 1980s (FEMAT 1993; USDA Forest 
Service and USDI Bureau of Land Management 1994; Marcot and Thomas 1997). 
A central question during this debate was, How long can current rates of harvest be 
sustained before the old growth is virtually gone?

The reduction in harvest levels in the early 1990s has reduced the urgency of 
this question for the PNW (Moeur et al. 2011), but the relevance of being able to 
assess trajectories of change is still timely. In PNW forests, the assessment of land-
scape change has expanded from the initial emphasis on stand-replacing distur-
bances such as timber harvesting and wildfire (Cohen et al. 2002), to partial 
disturbances (Healey et al. 2006) and efforts to quantify variation in the rate of 
regrowth following disturbance (Schroeder et al. 2006, 2007). Initially, these anal-
yses relied on the detection of a difference between pairs of Landsat imagery at 
intervals of approximately 5 years. More recently, Kennedy et al. (2007) have 
developed an automated approach that is based on the use of a long time series 
(>20 years) with an annual timestep to describe trajectories of change in forested 
environments. This approach is based on the notion that many natural and anthro-
pogenic phenomena in forests can be identified on the basis of unique trajectories 
both before and after the event. This approach is being used to identify a much 
wider range of disturbance processes, including insect outbreaks, disease, and 
windthrow and also provides a more nuanced description of gradients in distur-
bance severity (tree retention levels following partial harvest; variation in tree mor-
tality following wildfires).

Study Area. The Oregon Cascades were at the center of this debate over the man-
agement of PNW forests. The study area is on federally managed lands where tim-
ber harvesting has been conducted using a dispersed (staggered setting) system of 
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10–20 ha clear-cut patches. The rate and pattern of these disturbances is somewhat 
different than those on private lands (Spies et al. 1994) and is quite different than 
disturbances generated by wildfire during the presettlement era (Wallin et al. 1996b).

Spatial data for this area were derived from Landsat Thematic Mapper data using 
methods outlined in Cohen et al. (1995, 1998, 2002) and Wallin et al. (1996a). 
Forest cover was classified into six approximate age classes (Table 8.1). Images for 
three time periods are included here: 1972, 1984, and 1991. The images for the dif-
ferent time periods (pnw72.gif, pnw84.gif, and pnw91.gif) can be examined by 
using a web browser (use File, then Open on your web browser’s pull-down menu). 
Yellow areas denote young stands, successively darker greens are older forest, and 
brown areas are recent clear-cuts. The gray spot in the images is rock. Each image 
is 500 × 500 cells (15,625 ha) with a cell size of 25 m.

The file samp200.gif shows 200 random locations on the 1972 image. The cover 
type at each of these locations was tallied at time 1 (1972), 2 (1984), and 3 (1991) 
on the three maps. This information is tallied in columns of a primary data matrix 
and can be viewed by opening the text file samp200.dat.

Next, you will use the cover type data from the 200 sample points to build your 
own Markov model. In the following exercises, you will perform three main steps: 
model development, model verification, and model validation.

EXERCISE 1: Model Development

Here, you will use the data from the 200 sample points on the PNW images to cal-
culate transition probabilities for a Markov model. The transition probabilities will 
be based on landscape change from 1971 to 1984.

 1. From the primary data matrix (samp200.dat), construct a raw tally matrix that 
summarizes the number of the 200 cells that underwent a transition from type i 
to type j during the time period t1 (1972) to t2 (1984). Recall that each element, 
nij, in the tally matrix is the number of times where a cell changed from type i to 
type j during the time interval. Enter your results in Table 8.2 (NOTE: You may 
also wish to work on this in a spreadsheet using the file samp200.xls).

Table 8.1 Definition of cover types in the Pacific Northwestern 
forest landscape

Class Age (yr) Cover type

0 Background (Non forest)

1 0–20 Recent clear-cut

2 21–40 Early seral

3 41–80 Mid seral

4 81–170 Mature

5 >170 Old growth
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 2. Divide each element in the raw tally matrix by its row total to yield a matrix of 
transition probabilities pij, the probability (or rate) of change from type i to j. These 
probabilities are on a 12-year timestep (1972–1984). Enter your results in Table 8.3.

 3. Next, convert the transition matrix to an annual timestep. This is partly cos-
metic (transient dynamics will look smoother), but will also make it possible to 
reconcile the 12-year timestep of the first period with the 7-year timestep of 
1984–1991. To convert the transition probability matrix P to an annual timestep, 
do the following:
 a. Divide each of the off-diagonal elements pij, i ≠ j, by 12.

 b. Adjust the diagonal elements pii, to be 1 0. -å
j

ijp  

In other words, all rows must sum to 1.0. Enter the results in Table 8.4.

In this matrix (Table 8.4), the off-diagonal rates are now annual transitions (prob-
abilities). The diagonal elements are now larger than in Table 8.3 because on an 
annual timestep fewer of the cells actually change, and again, the rows of the matrix 
still must sum to 1.0.

 4. To finish building the model, summarize the state of the map at each timestep. 
The state of the map is defined by a row vector, the elements of which are the 
proportion of cells in each cover type in each of the maps. Construct three sum-
mary vectors from the primary data matrix (samp200.dat). To construct these 
vectors, simply sum up all of the cells in each state in each of the 3 years of 
sampling. Convert these numbers to proportions by dividing each element of the 
table by its row sum. (These vectors can also be derived from the transition 
matrices. How?). Enter your results in Table 8.5.

With these state vector tallies and the transition probability matrix P, you have 
constructed a simple model of landscape change. All that remains is to evaluate the 

Table 8.2 Raw tally matrix (1972–1984)

To (j): 1 2 3 4 5

From (i): 1

       2

       3

       4

       5

Table 8.3 Transition probability matrix (P) over a 12-year timestep

To (j): 1 2 3 4 5

From (i): 1

       2

       3

       4

       5

To avoid rounding errors later, perform your calculations to five decimal places
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model. The 1972 data will be used as initial conditions for the model. The second 
time period (1984) will be used to verify the model. The third time period (1991) 
will be reserved to validate the model.

EXERCISE 2: Model Verification Via Matrix Projection By Hand

Model verification consists of testing the model against the data used to construct 
it (Haefner 1996). In this case, the test is of the model projection from 1972 to 1984, 
compared to the actual data from 1984. Because the model was built from these 
data, this is not an independent test of the model; the model should, in fact, match 
these data. You will verify the model by initializing it with 1972 data and projecting 
it to 1984, both by hand (here) and by using a computer program Markov in Exercise 
3. Do the first matrix projection (from 1972 to 1984) by hand following the example 
below. To do this in one iteration, use the transition probabilities in Table 8.3, which 
are for a single 12-year timestep.

This example shows a generic matrix projection using only three cover types. The 
first step entails multiplying the transition probability matrix P by the state vector.

 

x x x

p p p

p p p

p p p

x p x p

1 2 3

11 12 13

21 22 23

31 32 33

1 11 2 21

[ ]×
é

ë

ê
ê
ê

ù

û

ú
ú
ú
=

+ ++ + + + +[ ]x p x p x p x p x p x p x p3 31 1 12 2 22 3 32 1 13 2 23 3 33, ,
 

Note the subscripts to ensure that the proper elements are being used: the inner sub-
scripts must always match (i.e., the subscript on x must match the first subscript on p).

Table 8.4 Transition probability matrix (P) over an annual timestep

To (j): 1 2 3 4 5

From (i): 1

       2

       3

       4

       5

The calculations along the diagonal cells (the probabilities of remaining the same) must be calcu-
lated last

Table 8.5 Summary vectors at three timesteps

Class 1 2 3 4 5

1972

1984

1991

Remember, enter your data as proportions
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An example using actual data with only three cover types would look like this.

a. Suppose the following transition probability matrix (P) is used:

 

P=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

0 90 0 10 0 00

0 10 0 80 0 10

0 10 0 00 0 90

. . .

. . .

. . .  

 b. Next, suppose all of the landscape is assigned to cover type 1 to begin:

 
x0 1 00 0 00 0 00= [ ]. . .

 

c. The first projection to t1 is:

 

1 0 0 9 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 8 0 0 0 0 1 0 0 0 0. . . . . . , . . . . . . , . . .× + × + × × + × + × × + 00 0 1 0 0 0 9

0 9 0 1 0 0

× + ×[ ] =
[ ]

. . .

. . .

The second projection to t2 uses the resulting vector:

 0 9 0 1 0 0. . .[ ]  

and the original transition probability matrix, and produces:

 0 82 0 17 0 01. . .[ ]  

You should verify this by hand. Also, note that these same data are used in the 
demo data file supplied with the lab (demo.txt).

EXERCISE 3: Matrix Projection Using the Program Markov

Not surprisingly, matrix projections are often accomplished with the use of a com-
puter program. Here, you will use a simple Fortran program called Markov. The 
program (markov.exe) can be run from a DOS prompt or by double-clicking 
directly on its icon. Demo input data are available (demo.txt).

MODEL INPUT

Markov expects to read a user-provided ASCII data file containing the transition 
matrix and a vector of initial conditions. For these exercises (with 5 cover types), 
these must be formatted as follows:

• Rows 1–5: the elements of the transition matrix (from Table 8.4)
• Row 6: the initial conditions (the 1972 row from Table 8.5)

D.L. Urban and D.O. Wallin



137

The data values themselves can be delimited by spaces, a comma, or tabs, and 
you should use enough significant digits to minimize round-off error (say, 5 decimal 
places).

MODEL OUTPUT

The output written by Markov consists of one line per timestep, reporting timestep 
(in column 1) followed the proportion of the landscape in each cover type at that 
time (in this case, columns 2–6). The output file from Markov is formatted so that 
it can be imported directly into a spreadsheet or graphics package. The program will 
report either the timestep at which the solution converged to steady-state, or that the 
model did not converge during the simulation. In the latter case, you need to rerun 
the model for a longer time so that it has time to converge. 

A session with Markov is as follows:

       Project a markov Model?
        Name of file with input data?  
        And name of file for output data? 
        Number of patch types in model?
        And number of timesteps to project?
       Model failed to converge in 100 timesteps

When asked for the number of patch types, this refers to the number of cover types 
in the model.

Using the program Markov, repeat your model projection from 1972 to 1984 using 
the following steps:
 1. Make an input file (a text file) that includes your matrix and vector data. Format 

your input data as explained in the MODEL INPUT section. (NOTE: you can 
refer to the file demo.txt for guidance, but remember that these data are for the 
example with only three cover types.)

 2. Run the program Markov.
 3. Compare your results from Exercises 1 and 2. Does the model projection repro-

duce the data used to build the model? If it doesn’t reproduce the 1984 data, what 
might explain the discrepancy?

HINTS: When running Markov, enter the full file name (including the filename 
extension). Be sure your input file is not open in some other program. Be sure your 
input file is in same directory as Markov.exe. Only use a simple text editor (like 
WordPad or NotePad) to edit your input files (don’t use Word or Excel).
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EXERCISE 4: Model Validation

Model validation consists of testing a model against data that were not used to 
construct the model (Haefner 1996). This is important as it is an independent test of 
the model.

 1. Still using the 1972 data as your initial condition vector, use the program Markov 
to project the model to 1991.

 2. Compare the predicted landscape composition to the actual composition tallied 
from the primary data table. This is a test to validate your model. Does the model 
projection match the 1991 data? If not, what might explain the discrepancy?

 3. Continue to project the model into the future, until it converges to a steady- state 
or until there is less than 10% of the landscape in old-growth forest, whichever 
comes first. How long will the old-growth last, or when will it equilibrate?

NOTE: You can complete all of these tasks with a single projection of the model. 
Simply run the model for a very long time (say, 1000 years). If it converges in less 
time, simply delete the extraneous years from the model output file using a text edi-
tor (the output is only interesting while the landscape is changing).

 CONCLUSIONS

This concludes the development, verification, and validation of a simple Markov 
model of landscape change. In some applications, such a simple model is sufficient 
(e.g., Johnson and Sharpe 1976; Johnson 1977; Hall et al. 1991). But in many cases, 
this simple model serves as a point of departure for more complicated models (e.g., 
Turner 1987; Baker 1989; Acevedo et al. 1995, 1996; Wear and Bolstad 1998; Wu 
and Webster 1998; Hong and Mladenoff 1999a, b; Mladenoff and Baker 1999; 
Urban et al. 1999). In particular, some consideration of the assumptions and limita-
tions of Markov models can be a useful aid in interpreting the behavior and predic-
tions of other models. These considerations are presented next.

 Further Considerations in Modeling Landscape Change

The simple Markov model serves as a useful point of departure for more compli-
cated issues in landscape modeling. Several of these are especially relevant to land-
scape dynamics.

Stochasticity. Models such as the one you have created are often used to project a 
map into the future by changing each cell in the map according to the transition 
probabilities. Because each cell can only change into one other state (a cell can’t 
change fractionally), the state changes must be done probabilistically. This can cre-
ate some new problems, as the new map is only one of many possible stochastic 
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realizations of a new map (since the map was created probabilistically). Thus, any 
comparison to a real map would have to be based on a number of replicate maps. 
Note that, in the limit, the average of a large number of stochastic simulations would 
be a map of the transition probabilities themselves.

Importance of history. Another issue concerns the assumption that to predict the 
future state of a system one need only know its current state. In cases where this is 
true, the process is truly first-order, also known as a Markov chain. In reality, there 
may be cases where information about additional prior states is needed. These cases 
would lead to higher order Markov models (e.g., in a second-order model, one 
would need to know the state of the system at time t and t−1 to predict its state at 
time t + 1). Systems with even longer “memory” would require still higher order 
models. For cases where the memory is very long, it might become more convenient 
to envision (and model) the dynamics in terms of a “time since” variable, such as 
“time since abandonment” or “time since disturbance,” instead of keeping track of 
a large number of previous states.

Stationarity. Because we have three maps, two first-order Markov models could be 
derived from our study landscape. We could derive transition matrices from 1972 to 
1984, and another from 1984 to 1991. There is a formal test for stationarity of these 
matrices (Usher 1992); nonstationary transition probabilities would vary between 
time periods. Nonstationary transition matrices would suggest the forces (or rules) 
governing landscape change were changing over time. Certainly, the drivers of land-
scape change might vary through time in regions with historical variation in socio-
economic drivers, true of most of the United States over the past several decades.

In the case of nonstationary transition rules, two alternatives are possible. In the 
discrete case, separate transition matrices can be computed for each time period of 
interest. For example, given a sequence of airphotos taken every 10 years for 50 
years, one could derive four separate transition matrices. Each matrix would be used 
to project from one time period to the next. Alternatively, the transitions could be 
specified explicitly as functions of time, so that the rules governing landscape 
change would vary with time. This approach would generate “smoother” dynamics, 
but would require some sort of curve-fitting for the time functions (as well as the 
data to support that curve-fitting!).

Spatial dependencies. A fourth complication arises if some of the transitions appear 
to have spatial dependencies. For example, certain kinds of transitions might tend to 
occur in certain topographic settings or in certain spatial configurations as defined 
by a cell’s immediate neighbors. These complications drive the modeling approach 
away from a simple Markov framework, toward models where the transition proba-
bilities depend not only on the current state of the system, but also on some other 
stated conditions. That is, the transition matrix contains conditional probabilities 
such as “if the cell is type i and meets condition k, then its probability of becoming 
type j is pij|k.” The condition might relate to site conditions (e.g., soil) or neighbor-
hood effects (e.g., contagious disturbance). It is a relatively straightforward proce-
dure to tally transition matrices as conditional probabilities. One simply constructs 
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a multi-layered tally matrix analogous to Table 8.4, but incorporating all of the spe-
cial conditions of interest. Clearly, this can become extremely data-hungry.

In any of these more complicated models of landscape change, the ability to 
solve the model analytically is rapidly lost; thus, complex models must be “solved” 
by iteration to steady-state (if such a state exists). This trade-off between simplicity 
and realism is common to all modeling efforts.

 WRITE-UP

Your lab write-up should include the following sections:

 1. The Introduction should state the motives of the exercise and provides some 
context. For example, why would we want to model landscape change?

 2. The Background section should focus on the conceptual basis and assumptions 
of a first-order Markov chain as a model of landscape change. Address the fol-
lowing issues:
 a. Try to present a Markov model, in a narrative sense, as clearly and concisely 

as possible. How does it work?
 b. What assumptions do we make, implicitly or explicitly, in using such a simple 

model?
 c. Given the assumptions and the simplicity of such models, why use them at 

all? That is, what is the value of simple models in assessing landscape 
change?

 3. The Methods should reiterate, concisely, the steps you followed to generate the 
model. This section could culminate in a presentation of the model as a transition 
matrix and as a graph, along with a table with the state vectors.

 4. Results should consist of:
 a. The projection of your landscape from 1972 to 1991, and your comparison of 

the model projection to the actual data for 1984 and 1991. You should be able 
to include all of this in one figure. You need NOT include the actual model 
output in tabular form.

 b. Include your hand calculations for the 1-year projection.

 5. The Discussion should address the following questions:
 a. How well does the model projection match the actual 1991 data? If it doesn’t 

match, what possible reasons might you suggest for the discrepancy?
 b. How would you address these discrepancies (what changes to the model or 

what additional data would you need)?
 c. Would you expect the landscape to ever reach a steady-state? Of what inter-

pretative value is the model solution (i.e., the steady-state composition of the 
landscape)?

 d. What would it take to maintain 20% of the landscape in old growth? That is, 
which transition rates would have to change, and how much?
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Chapter 9
Simulating Management Actions and Their 
Effects on Forest Landscape Pattern

Eric J. Gustafson

OBJECTIVES

Landscapes are characterized by their structure (the spatial arrangement of land-
scape elements), their ecological function (how ecological processes operate 
within that structure), and the dynamics of change (disturbance and recovery). 
Thus, understanding the dynamic nature of landscapes and predicting their future 
dynamics are of particular emphasis. Landscape change is difficult to study because 
controlled experiments at landscape scales often are not feasible for political, eco-
nomic, social and logistical reasons. Opportunistic studies of change (e.g., after a 
large fire) are often confounded by uncontrolled factors. For these reasons, changes 
in landscape pattern are often studied using simulation models. This lab will:

 1. Introduce simulation modeling as an important tool of landscape ecology;
 2. Show the utility of simulation models for examining landscape change at spatial 

and temporal scales that are not easily addressed using field methods;
 3. Illustrate an applied use of simulation modeling in landscape ecology—examin-

ing changes in landscape pattern caused by timber management;
 4. Discuss the assumptions and limitations of simulation models; and
 5. Show how models can be used to answer questions about landscape pattern and 

landscape change.

This lab exercise focuses on landscape change produced by forest management, 
using a timber harvest simulation model. The model you will use is a simplified 
version of HARVEST (http://www.ncrs.fs.fed.us/4153/Harvest/v61/documenta-
tion/), which generates patterns similar to those produced by timber management 
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Gustafson and Crow (1999). The model allows you to change the size of timber 
harvest openings, the total area harvested, and the spatial distribution of harvested 
areas (whether harvests will be clumped or dispersed). You will determine how 
different harvest regimes influence the amount of forest interior, amount of forest 
edge, and the mean patch size of forests. The software and data files needed for this 
lab can be obtained from the book’s website.

 INTRODUCTION

 Simulation Modeling

Science is a process of ruling out ideas that are not true, always leaving some uncer-
tainty about the ideas we think are true. The things we accept as scientifically true 
are actually a collection of conceptual models of how we believe the world works 
and that have withstood multiple attempts to disprove them. When we formalize a 
conceptual model using mathematical relationships, we have constructed a simula-
tion model capable of generating a prediction based on the initial conditions and the 
relationships formalized in the model. The utility of simulation models lies in their 
ability to show the consequences of assumptions as a result of variation in the input 
parameters. Model assumptions typically are based on an understanding of a pro-
cess derived from empirical study of the process. Simulation models are built for 
varying purposes (Karplus 1983). Some are used because they have predictive capa-
bilities (e.g., tree-growth models), some are used to improve our understanding of a 
newly developed theoretical model (e.g., metapopulation theory), and others illumi-
nate how we might manage an ecological system (e.g., by timber harvest) to pro-
duce desired conditions.

Spatial simulation models specifically include the spatial arrangement of key 
elements of the system being studied. Simulation modeling is especially suited to 
answer general questions about the spatial implications of interacting processes, 
especially when manipulative experiments of many combinations of treatments are 
not feasible. Simulation models also allow control of effects that are difficult to 
control in empirical experiments. Although stochastic (i.e., based on a random pro-
cess) spatial models may not be useful to predict the specific location of individual 
events, they can be used to generate replicate patterns with properties that vary in 
response to variation in the model inputs. These simulated patterns are assumed to 
be statistically indistinguishable from those that would be produced in the real 
world if the real process behaves as the model has assumed. Therefore, if compari-
son of the model results and empirical data reveal a significant difference, we can 
conclude that our model does not adequately simulate reality. Such a discrepancy 
also provides an opportunity to reexamine and revise underlying assumptions about 
the proposed mechanisms for the process that the model represents. Spatial model-
ing also allows identification of the parameters to which spatial pattern is most 
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sensitive, focusing hypothesis testing and empirical model development. This use 
provides insight into the implications of the view of reality that is formalized in the 
model. As such it has heuristic value—that is, it helps clarify our thinking.

When using a simulation model it is critical to understand the sensitivity of 
model results to changes in the input parameters (Haefner 1996). Large changes in 
some parameters may have little effect on the model results, whereas small variation 
in other parameters may induce large effects. Alternatively, model results may be 
nonlinearly related to the magnitude of the parameter value. An understanding of 
these model properties is gained by systematically varying input parameters, a pro-
cess known as sensitivity analysis. Here, you will conduct a limited sensitivity 
analysis of the HARVEST Lite model, and begin to understand the relationship 
between disturbance (timber management) and landscape pattern.

Because replicated landscape studies involving extensive removal of trees are 
generally not feasible, the study of how forest spatial pattern is affected by harvest-
ing strategies is facilitated by spatial simulation models. The conceptual basis for 
landscape-scale simulation of harvest patterns can be traced back at least to the 
coarse-grid model developed by Franklin and Forman (1987). Other harvest pattern- 
generation models include LSPA (Li et al 1993), CASCADE (Wallin et al. 1994), 
HARVEST (Gustafson and Crow 1996), SIMPPLLE (Chew et al 2004), and 
LANDIS (Gustafson et al. 2000). These models differ in the input data required, and 
the sophistication of the scenarios they can simulate.

The model you will use is a simplified version of HARVEST (Gustafson and 
Rasmussen 2005). HARVEST was designed to simulate even-aged timber harvest 
techniques that regenerate a stand of trees of the same age (e.g., clear-cutting, shel-
terwood, seed-tree techniques), generating patterns similar to timber management 
(Gustafson and Crow 1999). HARVEST has been used to predict the effect of alter-
natives management strategies on forest fragmentation (Gustafson and Crow 1996) 
and animal habitat (Gustafson and Crow 1994; Gustafson et al. 2001), and evaluate 
effects of diverse owner management strategies on landscape sustainability 
(Gustafson et al. 2007). For this exercise, the model was simplified to minimize the 
input data required and allow the user to experiment with the most interesting and 
important parameters while minimizing confusion caused by too much complexity. 
The model enables one to change the size of timber harvest openings, the total area 
harvested, and the spatial distribution of harvested areas (whether harvests will be 
clumped or dispersed).

 Change in Spatial Pattern

An important spatial consequence of intense disturbance (including even-age tim-
ber management techniques) or disease in forested ecosystems is the increased pro-
duction of edge and reduction of forest interior habitat. Although a number of 
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species appear to be sensitive to edge habitat (forest that is in proximity to a forest 
edge), it is not entirely understood why this sensitivity exists. One possible explana-
tion is that the amount of forest habitat found within a given radius of a nest located 
adjacent to an open area is less than a nest surrounded by forest (King et al. 1997). 
Another might be the increased predation or brood parasitism rates observed in edge 
habitats (Brittingham and Temple 1983; Andren and Angelstam 1988). It is also 
unclear how far negative edge effects permeate into the forest. Effects of light and 
microclimate on vegetation may extend only a few tens of meters into the forest 
(Chen et al. 1992). For some forest interior birds, the effect may extend 100–500 m 
(Andren and Angelstam 1988; DellaSalla and Rabe 1987; Van Horn et al. 1995) 
although the strongest evidence suggests an effect of only about 50 m (Paton 1994). 
Conversely, some species prefer edge habitat, and their numbers respond positively 
to the creation of edge habitat (Litvaitis 1993; Hewison et al. 2001). Likewise, it is 
not known how far from an edge that the habitat will still be suitable for edge spe-
cies. Because of these uncertainties, it is useful to quantify the amount of edge and 
interior habitat using a range of edge-buffer widths. The amount of interior present 
is quite sensitive to the width of the edge-buffer under certain patterns of forest 
openings, as you will discover.

The patch structure of landscapes is thought to have a significant effect on eco-
logical communities (Turner 1989). Disturbance usually produces patches (i.e., an 
area with habitat conditions that are different from those surrounding it). The patch-
iness of a landscape mosaic is the result of the interaction of past disturbance and 
the heterogeneity of the abiotic environment. Disturbance has the potential to sig-
nificantly alter the scale of patchiness of the landscape mosaic (Levin 1992). 
Consequently, monitoring change in patch-based measures of spatial pattern is an 
important way to assess landscape change, and spatial models provide a tool to 
investigate how disturbance may affect patchiness (Gustafson 1998).

Change in spatial pattern is also related to the rate of recovery after disturbance. 
When recovery is quick, disturbance effects are more transient. Timber harvest 
openings are generally ephemeral—succession occurs and forests regrow. However, 
the rate of recovery may vary widely depending on a number of factors, most nota-
bly climate (precipitation and temperature) and soil conditions, where colder, dryer 
or unproductive sites may take decades longer to recover than warmer, wetter, or 
productive sites. For this reason, the persistence of disturbance effects may vary 
markedly between different parts of the world.

 The HARVEST LiTE Model

HARVEST LiTE is a simple, yet powerful harvest simulator that allows control of 
the most important determinants of spatial pattern in managed forests. HARVEST 
LiTE allows the user to specify the definition of forest interior and the rate at which 
harvested areas recover to a closed canopy condition. This requires you to specify 
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the width of the edge-buffer used to calculate forest interior, and how long harvest 
openings will function as openings, perforating the forest interior. You will find this 
useful to investigate how changes in these definitions affect spatial pattern. The 
patch structure of the forest age map is also analyzed by HARVEST LiTE. Patches 
are identified using an 8-neighbor rule, meaning that cells of the same age that share 
a common edge or are adjacent in a diagonal direction are considered part of the 
same patch. The model parameters are as follows:

 MODEL INPUT

• Forest age map of initial conditions. Managed forests are typically divided into 
stands. A stand is an area with a common history and is relatively homogeneous 
with respect to forest composition and age. The age of a stand usually reflects the 
time (yrs) since harvest or other disturbance such as fire or windthrow. Two for-
est age (stand) maps representing different disturbance histories are supplied for 
this exercise.

• Mean harvest size. This is the average size of harvests (ha) that HARVEST LiTE 
will apply to the landscape. The model will generate harvests from a distribution 
with this mean size and a standard deviation 10% of this value. In real-world 
management, values may range from <1.0 ha to more than 300 ha, depending on 
the ecosystem and the management goals.

• Percent of forested area to cut. This is the percent of the forested area in the 
input map cut by the model each decade. For example, if 10% of the forest is cut 
each decade, 80% of the forest will have been harvested by the end of the eight- 
decade simulation.

• Dispersion method. Two spatial dispersion methods for harvests are available—
dispersed (harvests openings are placed independently), or clumped (harvests are 
placed in clusters of nine openings.) In both cases, harvests are only permitted in 
forest stands older than 80 years of age.

Two additional parameters are specified for the analysis of forest interior and edge:

• Edge-buffer width. This is the maximum distance (m) from a forest opening 
that edge conditions permeate into the forest. Interior conditions are assumed to 
exist at distances greater than this value. HARVEST LiTE must use a value that 
is a multiple of the map grid cell width (in this case 30 m). Other values will be 
converted to the nearest multiple of the cell width. A proposed definition of edge 
habitat for forest interior birds ranges between 50 and 500 m, which would be 
represented as 60–490 m in the model.

• Opening persistence time. This is the average time (yrs) that it takes for harvest 
openings to regrow to closed canopy conditions. Harvested cells younger than 
this value are assumed to be an opening, whereas cells exceeding this value are 
assumed to have a closed canopy. HARVEST LiTE will round values to the near-
est decade.
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 MODEL OUTPUT

Each simulation represents eight decades of harvest activity. Model outputs take the 
form of maps and map analysis reports including:

• Forest age map. Displayed upon completion of the simulation, this map reflects 
the cells harvested during the simulation, and the aging of unharvested cells. This 
map may be saved and used as input for other simulations.

• Area of forest interior. This is the area (ha) of forest interior conditions based 
on the input forest age map using the defined edge-buffer width described above. 
Forest interior habitat is shown in red.

• Area of forest edge. This is the area (ha) of forest edge conditions calculated 
based on the forest age map with interior conditions defined by the edge-buffer 
width. Forest edge habitat is shown as a gradient of colors other than red. A mea-
sure of linear edge (boundary) between patches of different ages is calculated as 
part of patch analysis, and this is different than the area of forest edge habitat 
calculated as part of interior analysis.

• Mean size of patches. This is the average size (ha) of forest patches, where 
patches are defined as contiguous cells of the same forest age. Some patches will 
be the result of simulated harvests and other remnants of uncut forest. 
Consequently, the mean size of patches will not likely equal the mean harvest 
size you used to simulate harvest activity.

 ASSUMPTIONS

A number of simplifying assumptions were made in the development of HARVEST 
LiTE to reduce input data requirements, and enable quick simulations over relatively 
large areas. The first assumption is that unless forest managers are intentionally try-
ing to manage spatial pattern, harvest openings within areas managed for timber 
typically take a spatially random distribution when accumulated over the course of 
a decade. This assumption is based on an analysis of harvest activity on the Hoosier 
National Forest (Gustafson and Crow 1996). However, HARVEST LiTE does 
include the constraint that harvests cannot be placed where the forest is younger 
than a specified age. This minimum age of forest that may be harvested has been 
fixed at 80 years in HARVEST LiTE, and all simulations run for eight decades. 
Several other simplifications have been made to reduce model complexity for this 
exercise. The standard deviation around the user-specified mean harvest size has 
been fixed at 10%. HARVEST LiTE includes an option to manage spatial pattern by 
producing clumped distributions of harvest openings. The nucleus of each clump is 
randomly placed, and then eight other harvest units are placed randomly around the 
initial harvest. HARVEST LiTE always leaves a 1-cell buffer between harvests allo-
cated in the same decade and adjacent to any non-forested land uses. HARVEST 
LiTE ignores specific forest types, assuming that forest types are harvested in pro-
portion to their availability. HARVEST LiTE uses stand age as a surrogate for 
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merchantability and ignores the density of trees and tree size class. The proximity 
of roads and the feasibility of conducting logging operations are assumed to be 
uniform across the land base.

For this exercise, two forest age maps have been provided. These maps were 
derived from stand maps of the Hoosier National Forest, and represent an area of 
almost 4000 ha, with a cell size of 30 m (0.09 ha). Non-forested areas appear black 
on the forest age maps; a lake occurs in the right-center of the input maps provided, 
and a small agricultural area in the lower right corner. One represents a managed 
landscape, where stands range in age from <10 to 140 years old (managed.gis). The 
other (undistbd.gis) contains a map with the same spatial characteristics, yet with 
no young stands, suggesting a lack of disturbance. Because none of the stands in the 
undisturbed map are too young to be harvested, there are initially no constraints on 
harvest.

 Instructions for Using the HARVEST LiTE Model

Start HARVEST LiTE by double clicking on its icon (or HarvLite.exe). A help docu-
ment is available from the Help menu.

 1. Specify a base forest age map to use for simulations by selecting Choose base 
map from the Model menu. This will load the map into memory and allow you 
to analyze the initial pattern, or alternatively, immediately begin a simulation.

 2. The spatial pattern of patches may be analyzed at any time using the Analyze 
menu. Analysis of forest interior requires specification of an edge-buffer width 
and an opening persistence time. HARVEST LiTE will display a map of forest 
interior and edge and calculate the amount of interior and edge habitat based on 
these values, with results printed to the screen and written to a running log file 
that can be saved as a record. You may conduct multiple analyses of interior on 
the same forest age map using various values for interior definition.

 3. Similarly, an analysis of patches calculates the mean size of forest patches 
(defined by their age) with results also written to the running log file.

 4. The running log can be saved to a text file at any time using the Save log file 
option under the Save menu. The running log is cleared when you load a new 
base map (and when you save the log file), so if you wish to save any analyses, 
do so prior to loading a base map.

 5. The map of interior may also be saved using the Save menu. Map files are saved 
in ERDAS 7.4 format, and may be loaded into many common GIS systems, or 
used as input maps for other HARVEST LiTE simulations.

 6. To conduct a harvest simulation, select Execute from the Model menu. A dialog 
will allow you to set the parameters controlling the allocation of harvests on the 
landscape. When the simulation is finished, an updated forest age map is 
displayed.

 7. You may now analyze the pattern of this changed landscape using the same 
analysis functions described above in steps 2 and 3. Analyses will be appended 
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to those conducted previously. You may also wish to save the new maps for later 
analysis or to use as input for further simulations (as in step 5).

 8. To conduct a new simulation using different parameters, reload a base map by 
selecting Choose base map under the Model menu. This will clear all prior 
maps, analyses, and parameter settings from memory.

 9. To quit HARVEST LiTE, choose Exit from the Model menu.

 EXERCISES

 Forest Harvest Simulation Scenarios

Complete the simulations for all assigned exercises before answering discussion 
questions to ensure you complete the simulations in the allotted time. An excel 
spreadsheet is provided to record and graph your results (HarvLite.xlsx). This is a 
stochastic simulation model (i.e., simulations are based on random number 
sequences). Thus, the model will not produce the same results on successive runs, 
and results will differ slightly among users. When asked to describe the relationship 
between a model parameter and a measure of landscape pattern, consider the pos-
sibility that they are not related.

EXERCISE 1: Effects of Mean Harvest Size on Forest Pattern

Forest managers are being compelled (either by regulation or public opinion) to 
reduce the size of clear-cuts and other timber harvest activities. For example, in the 
USA there is a 16 ha limit on the size of clear-cuts on most National Forests. In 
preparation for this exercise, propose hypotheses (circle options below) about how 
clear-cut size is related to the amount of forest interior and forest edge remaining on 
a landscape, given a constant area of timber harvest.

• Hypothesis 1: The amount of forest interior will (increase/decrease) as clearcut 
size increases.

• Hypothesis 2: The amount of forest edge habitat will (increase/decrease) as 
clearcut size increases.

The following exercise will allow you to test your hypotheses by simulating four 
different management scenarios in which mean harvest size differs. To do so, follow 
the sequence of steps below.

 1. From the Model menu, select Choose base map. Use the input file managed.
gis, found in the same directory as the HARVEST Lite program itself.

 2. Use HARVEST Lite to simulate four forest management scenarios in which 
mean harvest sizes vary (use sizes of 1, 10, 20, and 30 ha). To do this, select 
Execute from the Model menu. Enter a harvest size of 1.0. The values for the 
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other two simulation parameters (% forest area to cut and dispersion method) 
will be held constant across simulation runs. For Percent of forested area to 
cut, enter a value of 3.0, and select the Dispersed dispersion method. Click on 
the OK button to start the simulation.

 3. When each simulation run has completed, calculate the amount of forest interior 
by selecting Interior (after harvest) from the Analyze menu. Enter an Edge-
buffer distance of 180 m and an Opening persistence time of 20 years. Be sure 
to use these values for each simulation in this exercise. Also conduct a patch 
analysis by selecting Patches (after harvest) from the Analyze menu.

 4. Use spreadsheet provided (see the tab for Exercise 1) to record the mean harvest 
size, area of forest interior, area of forest edge, and mean patch size (all age 
classes) for each run. These values can be found in the Progress and Results 
window after each analysis is completed. If you wish to save the log file after 
each simulation, be sure to do so (select Save log file under Save menu) prior to 
reloading the base map.

 5. Repeat steps 1–4 for the other three harvest sizes (10.0, 20.0, and 30.0 ha).
 6. Recalling that Harvest Lite is a stochastic model, replicate your data two more 

times, and record those results in the appropriate tables in the spreadsheet. The 
purpose of replication is to provide a sense of the variability among model runs and 
to provide mean values that are more accurate than those from a single model run.

 7. Examine the graphs of the area of forest interior, forest edge, and mean patch 
size plotted against mean harvest size. Answer the following questions:

Q1  Is there a threshold effect of mean harvest size (i.e., a small range of values 
where the effect changes markedly)? If so, at approximately what mean harvest 
size does the threshold occur?

Q2  If you were advising a forest manager who was under pressure to both mini-
mize harvest size and to maximize forest interior habitat, what would you rec-
ommend as a policy for mean harvest size?

Q3  Would you say the variability among model runs is high or low?

Q4  Based on the graphs, would you say your hypotheses were supported or 
discredited?

EXERCISE 2: Effects of Percent of Forest Cut Each Decade on Forest Pattern

Timber production levels are declining on many publicly owned forests in the USA, 
primarily to enhance biodiversity and other non-commodity values of forests. This is 
implemented primarily by reducing the percentage of the land over which timber 
harvest is allowed. In this exercise, we will examine the effect of changing the per-
cent of forest cut each decade. In preparation, propose a hypothesis about how the 
percent of forest cut each decade is related to the amount of forest interior and forest 
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edge remaining on a landscape, given a constant timber harvest size. Upon reflection, 
you might likely hypothesize that increasing the area cut will decrease the amount of 
interior. Thus instead, consider a more subtle hypothesis about whether the relationship 
is linear (straight line) or nonlinear (curve) by circling an option below:

• Hypothesis: The amount of forest interior will decrease (linearly/nonlinearly) as 
clearcut size increases.

To explore your hypothesis, follow these steps:

 1. From the Model menu, select Choose base map. Use the input file managed.gis.
 2. Use HARVEST Lite to simulate four other forest management scenarios in 

which the Percent of forested area to cut varies, from 1 to 7% of the landscape 
each decade in 2% increments. Hold the other parameters constant for each of 
these runs. Use a Mean harvest size of 5.0 ha, and the Dispersed dispersion 
method.

 3. Calculate the amount of forest interior using an Edge-buffer distance of 180 m 
and an Opening persistence time of 20 years. Be sure to use these values for 
each simulation in this exercise. Also conduct a patch analysis.

 4. Record data in the Exercise 2 tab of the spreadsheet.
 5. Repeat steps 1–4 for each Percent of forested area to cut (1, 3, 5, 7%) and rep-

licate two more times.
 6. Examine the graphs and answer the following questions:

Q5  What is different about the shape of these plots compared to those generated for 
the effects of mean harvest size? Was your hypothesis supported?

Q6  Does there appear to be a threshold effect of percent of forest area cut each 
decade? If so, at approximately what percent does the threshold occur?

OPTIONAL: You may wish to produce a 3-D surface plot combining the results of 
this and the previous exercise. Additional simulations will be necessary to complete 
the plot. Compare your results to those in Gustafson and Crow (1994).

EXERCISE 3: Effects of Spatial Dispersion on Forest Pattern

Landscape ecologists have argued that intentionally managing the spatial pattern of 
landscapes can improve habitat conditions. One option available to forest managers 
is clustering harvest activity. This exercise will examine the effects of clustering of 
harvests on area of forest interior, area of forest edge, and mean patch size.

 1. Select the input file undistbd.gis.
 2. Choose a mean harvest size between 5 and 30 ha, and a percent of the forest 

area to be cut between 1 and 7%. Run three replicate (parameters unchanged) 
simulations each for dispersed and clustered harvests.

E.J. Gustafson



153

 3. Calculate the amount of forest interior using an Edge-buffer distance of 180 m 
and an Opening persistence time of 20 years. Also conduct a patch analysis. 
Record data in the tab for Exercise 3.

 4. Examine the graphs and answer the following questions:

Q7  In statistics, a significant difference between groups indicates that values 
observed in one group are highly unlikely to be also observed in a different 
group. Would you say that clustering harvests significantly changes the area of 
forest interior habitat when compared to dispersed harvests? What about forest 
edge habitat? Mean patch size?

Q8  How did you judge significance from these plots? (HINT: look at the error bars.)

EXERCISE 4: Effects of Edge-Buffer Width and Opening Persistence 
Time on Forest Pattern

There is some debate about how far into the forest the effects of edge are evident. 
The effects related to reduced nesting bird densities and increased nest predation 
may extend much further into the forest than do microclimate effects. Forests also 
recover from harvesting at different rates in different ecosystems. Forests on good 
soils in moist climates may recover more quickly than forests on poor sites or in 
relatively dry climates. This exercise will examine how the spatial pattern of forest 
interior depends on how interior habitat is defined.

 1. Select the input file managed.gis.
 2. Simulate harvests with a mean harvest size of 1.0 ha and 4% of the forest area 

cut each decade. Use the Dispersed dispersion method. This will be the only 
simulation run for this exercise.

 3. Calculate area of forest interior using no edge-width buffer (0 m), a 150 m edge-
buffer width, and a 300 m edge-buffer width. Assume that openings persist for 
two decades. Do not conduct a new simulation between interior calculations for 
each edge-buffer width.

 4. Record data in the tab for Exercise 4 in the spreadsheet.
 5. Without running another simulation, repeat the three calculations in step c, this 

time using an Opening persistence time of three decades. Record your data.
 6. Examine the graphs and answer the following questions:

Q9   Does an increase in edge-buffer width have a disproportionate effect on the 
area of forest interior habitat? Why or why not?

Q10  Some species are highly sensitive to the presence of edge in their habitat, and 
therefore a large edge buffer width would be used to calculate suitable habitat 
for them. What is the consequence of timber cutting for such species relative 
to less sensitive species?
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Q11  What is the effect of a longer opening persistence time?

Q12  To maintain interior habitat in a forest with slow-growing species (i.e., open-
ings persist longer), make recommendations about timber cutting strategies to 
achieve this goal based on what you have learned in this lab exercise.

SYNTHESIS

Q13  Is forest interior more sensitive to variation in “Harvest size” or “Percent of 
forest area cut?” To which is forest edge more sensitive? To which is patch 
size more sensitive? Can you think of a situation where a forest manager 
would find this information useful?

Q14  How did this exercise change your thinking about the spatial aspects of timber 
harvesting? How might the results of your simulations be used to develop a 
research project or advise a forest management debate about trade-offs?

Q15  Review the assumptions made by the HARVEST Lite model. Under what sce-
narios might they be reasonable or unreasonable? How might you test these 
assumptions? How does knowledge of the assumptions influence interpreta-
tion of the results?

Q16  Was there a parameter missing from the model with which you wanted to be 
able to experiment? What was it, and how might that parameter be related to 
the habitat requirements of a forest species?

Q17  Consider the process and impacts of landscape change represented by each of the 
parameters that can be manipulated by HARVEST Lite (mean size of harvests, 
% of forest cut, dispersion). How are these processes and impacts similar to dis-
turbances in non-forested landscapes? How are they different? Do you think the 
principles you learned today can be applied to other ecological systems?
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Chapter 10
Regional and Continental-Scale Perspectives 
on Landscape Pattern

Jeffrey A. Cardille and Monica G. Turner

OBJECTIVES

Landscape patterns vary widely across Earth’s surface as a result of both anthropo-
genic and natural causes. This variation among landscapes can be quantified by 
using a large number of metrics developed to capture distinctive qualities of spatial 
pattern. An informed understanding of pattern–process relationships involves land-
scape comparisons among and within regions. Despite many advances in landscape 
pattern analysis, informed selection of landscapes for studying pattern–process rela-
tionships in real-world situations remains challenging. This lab explores these chal-
lenges with objectives designed to enable students to:

 1. Think critically about the benefits and limitations of subjective, nonquantitative 
landscape assessments;

 2. Examine the statistical distributions of landscape metrics within or among 
regions by exploring histograms for commonly used metrics;

 3. Learn and implement ways to improve landscape comparisons through selection 
of appropriate study landscapes based on specified land-cover proportions, 
arrangements, or gradients; and

 4. Gain experience using two practical tools (Metric Finder and Metaland) within 
the context of realistic landscape monitoring scenarios.

In Parts 1 and 2, you will conduct your own rankings of landscapes visually and 
then use Metric Finder to evaluate your work. In Parts 3 and 4, you will use Metaland 
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to identify landscapes according to criteria useful in providing a continental per-
spective on landscape pattern. For each of these exercises, you will need to query 
and evaluate information from evolving online databases. Links to these tools and 
databases can be found in this chapter’s student guide at http://goo.gl/FTc4gY or via 
the web site for the book.

 INTRODUCTION

Landscape ecologists now have at their disposal a large number of well understood 
and widely used metrics that quantify landscape composition (the relative abun-
dance of different land-cover categories in a landscape) and configuration (the spa-
tial arrangement of those land-cover categories). Readily available data and 
user-friendly software, such as Fragstats (McGarigal et al. 2012) make such analy-
ses routine. However, researchers new to landscape pattern analysis may find it 
difficult to understand metrics intuitively, and visual assessments of how a set of 
landscapes vary with respect to particular metrics can be very challenging, and even 
misleading. Exercises that allow students to “see” landscapes through the lens of 
different metrics provide a useful foundation for using and interpreting the results 
of numerical landscape analyses.

Because landscape ecology focuses on the causes and consequences of land-
scape heterogeneity, landscape pattern metrics are often used as independent vari-
ables in research. There are many, many examples of such studies in the published 
literature, but the type of question is general: How does landscape composition and/
or configuration influence a process of interest? The response of interest may be the 
presence, abundance, or demography of focal taxa, species richness, nutrient load-
ing or water quality in lake or rivers in a given watershed, rates of land conversion 
that has occurred over a particular time period, spread rate of invasive species, rates 
of encounter between predators and prey, or many other phenomena that may be 
affected by landscape pattern. To answer such questions, researchers often need to 
systematically identify replicated study landscapes that vary in composition and 
configuration in predetermined ways, and this task can be daunting. In many cases, 
researchers are left to analyze multiple maps in the hope of finding sets of study 
areas that vary in the desired manner. Land managers may face similar challenges, 
such as identifying forest-dominated landscapes in which forest patch sizes are 
above a threshold size required to sustain species of conservation concern.

Consider the following scenario. In many areas, urban and semi-urban environ-
ments are replacing agriculture and forests. This low-density development often 
greatly increases the amount of edge between forested and non-forested land. Such 
fragmented forest landscapes are common in New England, USA, which is a region 
with high prevalence of Lyme disease. Lyme disease is a bacterial, tick-borne illness 
found throughout eastern North America that causes skin rashes, cardiac abnormali-
ties, and neurological problems. Since its discovery in the 1970s, rates of Lyme dis-
ease occurrence have increased steadily, and over 15,000 people are infected each 
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year. Small mammals, especially the white-footed mouse (Peromyscus leucopus), are 
the most abundant competent hosts for the disease-causing bacterium and a key host 
for the larval ticks. Landscapes with numerous small patches of forest (and thus high 
forest edge density) tend to have high populations of white-footed mice, and these 
are also landscapes where humans are likely to encounter the ticks. Research has 
shown (e.g., LoGiudice et al. 2003) that ecosystems with a high density of competent 
hosts are associated with increased rates of Lyme disease, and this is where the con-
nection to landscape pattern occurs. Imagine a study of New England that seeks to 
initiate a wide-ranging field campaign to survey host abundance and disease preva-
lence, along a tightly controlled gradient of expected risk of Lyme disease. Given a 
land-cover map of all of New England, how would you begin to choose 5, 10, or 100 
sampling areas to sample? It is often difficult to identify and select landscapes that 
allow for processes or conditions to be controlled across gradients, or for random 
sampling among replicated landscapes that share a given set of characteristics.

To help with such spatially extensive and complex challenges, the Metaland 
(Cardille et al. 2005) and Metric Finder tools have been developed. Built on data-
bases of landscape and class-level metrics generated for large data sets of same- sized 
landscapes, Metaland is designed for understanding variation in patterns across 
large areas, learning about the statistical distribution of real-world landscape metric 
values, and selecting landscapes with desired characteristics. It includes values for 
more than 190,000 contiguous 6.48-km × 6.48-km landscapes (at 30-m resolution) 
across the conterminous US, across several time periods. Despite caveats associated 
with their use and interpretation (e.g., Gustafson 1998; Li and Wu 2004; Langford 
et al. 2006; Cushman et al. 2008; Eigenbrod et al. 2011; Turner and Gardner 2015), 
landscape metrics have been seen to be valuable for finding differences and similari-
ties among landscapes in this comprehensive data set. For example, Cardille and 
Lambois (2010) used the 1992 Metaland data to discern a widespread imprint of 
human activities on US landscapes, distinguishing among different types of land-
scapes based on the similarity of their landscape metric “signature.”

This chapter focuses on subjective and objective assessments of landscape pat-
tern, and the interactions between what we perceive and what computations of land-
scape metrics can tell about the world around us. This set of exercises introduces 
students to Metaland and explores the associated Metric Finder tool, two resources 
for understanding differences and similarities among different landscapes and for 
identifying sets of landscapes that meet predetermined criteria for landscape com-
position and configuration. You will investigate patterns in land-cover data derived 
from Landsat imagery for the National Land Cover Data Set (NLCD; Vogelmann 
et al. 2001; Homer et al. 2007; Fry et al. 2009; Jin et al. 2013).

 Part 1. Estimating Landscape Metrics by Eye

In landscape ecology, how hard is it to quantify pattern? How straightforward is it 
to say that two landscapes are similar, and that another one of them is unlike the 
others? We begin by determining how well our visual assessments match up with 
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quantitative measures of landscape pattern. You will describe the patterns you see in 
sample landscapes, and then compare your visual estimates with calculated land-
scape metric values.

EXERCISE 1: Visual inspection

Consider six landscapes extracted from the New England region, located in the 
northeastern USA (Figure 10.1). More than 15 land-cover categories are shown in 
these images, but you can think of them in four main categories: (1) red and pink for 
residential and commercial development; (2) green for forest; (3) yellow, brown, 
and beige for agriculture; and (4) light and dark blue for water and wetlands. Inspect 
these six landscapes in the figure or at the link provided in the student guide, then 
compare and contrast their composition and configuration.

Q1  What qualities do you see that are similar or different? You might consider the 
proportions of different land-cover types and how they are arranged; you might 
also think about the land-use history that may have driven the patterns you see, 
or the connections between areas of a given land-use type. Write down your 
observations, noting at least three similarities and three differences.

Figure 10.1 Six landscapes from New England, USA. Classification taken from the National 
Land Cover Data Set for 2001
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EXERCISE 2: Ranking using metrics

Any of a large number of landscape metrics can be estimated in a landscape ecologi-
cal study, but how well can we “see” these values on different landscapes? Some 
metrics are more intuitive than others, and some landscapes may have distinctive 
characteristics that are not easily seen. For some commonly used landscape metrics, 
you will see how well you can assess key characteristics of different landscapes 
based solely on visual inspection.

Rank each landscape in Figure 10.1 from lowest to highest value according to 
each of the following metrics:

• Proportion of agriculture
• Proportion of forest
• Proportion of residential and commercial development
• Proportion of water and wetlands
• Total linear amount of edge between all land-cover categories in the landscape
• Contagion
• Shannon Evenness

Q2  Describe the relative ease or difficulty in ordering these landscapes according to 
each metric. Which metrics were easiest to rank, which were most challenging, 
and what made them easy or difficult? Next, compare your ranking to the “true” 
order based on the numerical values, which can be provided by your instructor. 
How well did you do? When there is disagreement, why do you think this occurred?

 Part 2. Metric Finder: Relating Visual Assessments 
to Landscape Metrics

In a landscape ecology analysis, we may know the type, or “look,” of the landscapes 
we are interested in, but it can be difficult to match metrics with those mental criteria. 
This section explores a way to identify a suite of landscape metrics that corresponds 
to visual criteria that you define. The idea is that with a landscape characteristic in 
mind, you visually determine which two of a trio of landscapes appear most similar, 
and which one of the three is most different. Using the same logic as an email spam 
filter that learns more and more about the characteristics of unwanted messages as 
you identify them, Metric Finder learns your preferences as you choose pairs of 
landscapes according to the criteria you use to judge similarity. In computer science, 
this is known as a labeling approach: you provide the labels of similarity, and Metric 
Finder gradually reveals which metrics of composition and configuration fit the pat-
tern of pairings that you make. Given more and more iterations of labeling, Metric 
Finder builds an increasingly confident view of your perception of landscape charac-
teristics. Using this tool can help you to decide which metrics might be useful for a 
particular study, while also revealing whether some routinely used metrics are easy 
or hard to distinguish visually in real-world landscapes.
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Imagine different ways in which the three landscapes in Figure 10.2 are similar 
to and different from each other. For example, Landscapes G and J each contain a 
river, so a user emphasizing the shape of waterways, or the impact of water on 
nearby development, might rate them the most similar with respect to those criteria. 
Alternatively, all three landscapes contain low- and medium-intensity development, 
and landscapes H and J appear most similar with respect to the amount (and, per-
haps shape) of these developed classes. Landscapes H and J are also similar to each 
other with respect to the amount of core forest, so a forest criterion might consider 
them more similar to each other than to landscape G.

Metric Finder is designed to interpret such labels of landscape similarity to iden-
tify the pattern measures that best distinguish the landscapes, using the unique per-
spective of each user. To do this, the tool repeatedly presents three landscapes for 

Figure 10.2 Example set of three landscapes from an iteration of Metric Finder
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Figure 10.3 Conceptual diagram of two metrics that record different characteristics of three land-
scapes, G, H, and J. For users who select landscapes G and J as similar, a metric quantifying the 
amount or shape of Open Water corresponds more closely to their perception than does the metrics 
of the amount of Core Forest. Users who select landscapes H and J as similar suggests that Core 
Forest may be important to their perception of landscapes, and that Open Water is not

visual interpretation. While looking at the three landscapes, the user identifies which 
two of the three look the most similar from his or her perspective—or equivalently, 
which one of these landscapes is not like the others. Then, for each metric from a 
predetermined list, Metric Finder evaluates the relative similarity of the three val-
ues, estimating the probability of having picked those two landscapes as being simi-
lar if the metric had been a criterion considered by the user.

In the iteration of Metric Finder shown in Figure 10.3, the values of the amount 
of Core Forest are more similar to each other than are the values of the shape metric 
of Open Water, for which two of the three are much more similar. By Metric Finder’s 
logic, a user who selects landscapes G and J as being more similar is more likely to 
be responding to the shape of Open Water than to the amount of Core Forest. After 
the user chooses which two landscapes in a trio are the most similar, Metric Finder 
adjusts each metric’s current estimated score either up or down, depending on the 
weight of the evidence given the paired landscapes. By interpreting pairings of land-
scapes in this way, Metric Finder tries to estimate which metrics correspond best to 
a user’s perception of landscape pattern.

In this exercise, you will use a set of more than 650 New England landscapes, 
each of which is 6.48 km × 6.48 km in extent and represents land cover at 30-m reso-
lution for the year 2001 (Homer et al. 2007). We also will explore this set in a later 
part of this chapter, extracting the set using Metaland from a much larger set of 
landscapes representing the continental USA.

EXERCISE 3: Labeling Landscapes Using Metrics of Proportion

 1. To begin, you will explore the basic functionality of Metric Finder. The web 
address of the tool can be found in this chapter’s student guide. The tool will load 
into your browser.

 2. Examine the Metric Finder interface. At the top are three landscape images cho-
sen at random from the set of New England landscapes, with selection boxes for 
each. Below the images are two sets of metrics: one denoting class proportions, 
such as “Shrub,” and one denoting landscape-level metrics, such as te for Total 
Edge. Near that is a two-class clustering of the landscapes shown on a map, as 
well as summary characteristics of the two clusters.
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 3. Focus first on the Proportion of Pasture, a prominent land-use class, whose yel-
low color in the classification is easy to identify.

 4. For the first three landscapes presented by Metric Finder, select the two that 
appear to have the same amount of Pasture. You can choose a pair either because 
the amounts of Pasture are both high or because they are both low—the important 
point is to choose the two that are more similar to each other than to the third 
nonselected landscape. Recall that for a given Pasture proportion, Pasture pixels 
can appear in very different configurations.

 5. If the decision is too difficult or subtle for a given trio of landscapes, click “Skip” 
to load a new set.

Q3  When you focus on pairing landscape using the Proportion of Pasture as the 
criterion, how many iterations does it take for Metric finder to detect this by 
moving it near the top of the list of proportion metrics?

EXERCISE 4: Metrics of Proportion for Rare Classes

Pasture was one of the most frequently occurring land-cover classes, and it is rela-
tively easy to work with. Next, you will examine less-dominant classes.
• Reset the metric probabilities using the Metric Finder interface.
• Now, try to label landscapes using a rare land-cover class, Medium- Intensity 

Developed. In this set of landscapes, less than 1% of the landscape (on average) 
is Medium-Intensity Developed, compared to 12% for Pasture

Q4  Is it easier or harder for Metric Finder to detect that you are distinguishing 
landscapes using the Proportion of Medium-Intensity Developed metric? Do 
you find that other land-use classes move up and down with the Proportion of 
Medium-Intensity Developed metric? If so, why might this be?

EXERCISE 5: Labeling Landscapes Using Metrics of Configuration

Based on your understanding of landscape metrics from other chapters, you will use 
Metric Finder to try to pair landscapes with respect to their landscape metrics of 
configuration. First, reset the metric probabilities and try to distinguish landscapes 
using the Contagion metric, which you learn about in Chapter 4. High values of 
Contagion are associated with more aggregated land-cover patterns, and low values 
have land-cover patterns that are very dissected. After working to promote Contagion 
to the top of the metrics list, choose another configuration metric (e.g., Total Edge) 
that you think might be straightforward to distinguish among landscapes.

Q5  Explain the conceptual similarities and differences between Contagion and the 
other configuration metric(s) you chose. Why do you think each might be more 
or less difficult to recognize visually using Metric Finder?
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Q6  In comparison to the class-level metrics of proportion of the previous exercise, 
is it easier or harder to distinguish landscapes using metrics of configuration? 
That is, is it easier or harder to intentionally move a certain configuration metric 
to near the top? Why or why not?

EXERCISE 6: Grouping Landscapes with Metric Finder

As it promotes and demotes landscape metrics based on their fit to how you have 
distinguished landscapes, Metric Finder dynamically groups and regroups land-
scapes into two clusters based on the results of your labeling. At a given iteration, 
the metrics chosen as clustering criteria are those having the highest estimated 
score: thus, as you refine and confirm your criteria by selecting pairs of landscapes, 
the clustering should gradually come to match the clustering you would expect for 
your set of criteria. As criteria for the grouping, the algorithm bases its clustering on 
the three highest-rated composition metrics and the three highest-rated configura-
tion metrics. At any moment, the three highest-rated of each are shown with a green 
background on the Metric Finder interface.

Using Metric Finder’s clustering ability, you can evaluate the usefulness of the 
set of metrics you are implicitly choosing as you label landscapes. The clustering is 
shown during this process in several ways. First, the full set of landscapes in con-
sideration by Metric Finder is grouped into two sets with the well-known k-means 
algorithm; their locations are drawn on a map. Second, a selected group of 15 rep-
resentative landscapes for the set (Cardille et al. 2012; Cardille and Lambois 2010; 
Frey and Dueck 2007) are displayed, with their current grouping shown at each 
iteration. You can form your opinion of the usefulness of a set of metrics using the 
regional-scale clustering map, the clustering of representative landscapes, and the 
cluster statistics shown for the high-score metrics.
• Reset the metric probabilities using the Metric Finder interface.
• Develop your own criteria for distinguishing landscapes, and explore with Metric 

Finder. For example, you might try to separate landscapes with a high proportion 
of any type of developed land.

• When distinguishing landscapes for this exercise, pay attention to the area of the 
Metric Finder interface that shows the clustering assignments, projected over all 
of the landscapes in the set. Because the clustering algorithm considers only 
landscape metric values and not the geographic position of each landscape, there 
may or may not be a coherent pattern in the clustering of the landscapes.

Q7  How successful is the mapping of the full set of landscapes according to your 
identified selection criteria? As you select pairs of landscapes and your desired 
criteria are gradually confirmed, does the resulting classification of landscapes 
become gradually more or less stable?

Q8  In your opinion, how successful was the clustering of the representative land-
scapes into two groups? That is, how well did the clustering of the landscapes 

10 Regional and Continental-Scale Perspectives on Landscape Pattern



166

reflect your identified selection criteria? Are regional-scale landscape patterns 
revealed? If so, what elements of the landscapes appear to drive them?

SYNTHESIS EXERCISE 7: Identifying Metrics for Management

You have been named the director of a newly created Agency for Monitoring 
Environmental Change (AMEC) for the USA. Your charge is to develop the means 
for objectively monitoring differences in landscape patterns and their connection to 
ecosystem processes. In your position, you want to know whether the metrics 
selected by your colleagues are good candidates to distinguish landscapes in pro-
posed study areas. While working to identify metrics for national reporting of Lyme 
Disease risk, two colleagues have developed a serious disagreement about which 
metrics can best represent the New England landscape.

One colleague prefers a simple composition metric, believing that the Proportion of 
Deciduous Forest is easy to calculate and recognize, straightforward for land managers 
to use, and thus an excellent proxy for landscapes with high amounts of forest edge. The 
second colleague argues that the total amount of edge between different land-use types, 
a configuration metric, is of more direct ecological relevance, and that the agency does 
not need to use an indirect proxy to estimate Lyme Disease risk. The first colleague 
counters that while the Total Edge metric is also easy to calculate with Fragstats, it is a 
landscape-level metric that includes edges between land-use classes that are not rele-
vant to the research question. She feels that even if there were a strong statistical cor-
relation between Total Edge and tick density, differences in values of the Total Edge 
metric are in practice much harder to distinguish and control in real-world landscapes, 
suggesting, “you can’t manage what you can’t see.” As director, you suggest that each 
analyst use Metric Finder to look at landscapes with respect to their metric of choice.

With a partner, assume the roles of these two analysts and work side-by- side with 
Metric Finder in these same New England landscapes, with one trying to distinguish 
landscapes using the metric of composition, Proportion of Deciduous Forest, and 
the other distinguishing them using the metric of configuration, Total Edge. Continue 
labeling landscapes until the top three metrics of each type attain stable, high scores. 
Use your judgment about what constitutes a stable high score.

When assessing the landscapes, each analyst should fill out the online form that 
will record the information about the metrics that were promoted to the top; this 
should allow you to put your own work in the context of others who have done this 
exercise. The form can be found via this chapter’s student guide.

 Q9  Are the two metrics equally easy to recognize in this real-world set of land-
scapes? When labeling landscapes according to one metric, what are the other 
metrics that appear to move in sync with them? Are those metrics correlated, 
or is there another explanation?

Q10  Are the clusters of representative landscapes similar in the work of the two 
analysts? Do the clusters appear to reflect the criteria you have used to classify 
them? Are the maps of landscape groupings similar for the two analysts?
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Q11  For the two analysts, what are the statistical characteristics of the two clusters 
“resulting from” the labeling exercise? How might the statistical properties of 
the clusters be used to evaluate whether one analyst was more successful than 
the other in this effort?

Q12  The entire set of responses from everyone who has done this lab exercise are 
recorded in a growing online spreadsheet. A link to the spreadsheet can be 
found in this chapter’s student guide. By inspecting the charts there, you can 
see the results of others who have played the roles of these analysts, which can 
help you better understand any differences between your work and that of 
your partner. Your report can address the following questions: Across all ana-
lysts, were the distances between the clusters significantly different between 
the two types of analysts? That is, is it more effective to focus on one type of 
metric or the other for this set of landscapes? Do some metrics show up much 
more frequently than others—if so, why?

 Part 3. Exploring Variation in Landscape Metric Values 
Across a Region

You have now distinguished landscapes based on visual, qualitative assessments of 
landscape composition and configuration. You have also used a variety of criteria to 
assess similarity and differences among landscapes. What if you needed to identify 
a set of landscapes that met specific composition and configuration criteria for a 
field or modeling study? For example, what if you wanted to explore the effects of 
forest spatial pattern on seed dispersal, and needed to locate in your study region a 
set of landscapes with similar amounts of forest cover but different numbers and 
sizes of patches of forest? Or what if you wanted to study natural enemies of agri-
cultural pests and needed to identify 30 landscapes having similar amounts of crop-
land but varied amounts of natural vegetation? Could you identify, say, 50 replicates 
of landscapes with 40% cropland but with high, medium, and low amounts of natu-
ral vegetation? This section explores a way to answer questions like these with the 
Metaland tool, which allows you to identify landscapes according to specified crite-
ria for a regional- or continental-scale perspective on landscape pattern.

EXERCISE 8: Using Metaland to Select Landscapes with Geographic 
Criteria

• Access the Metaland web site. A link to the tool can be found in this chapter’s 
student guide.

• Select Understanding and Retrieving Statistical Distributions. Choose the 
data set for the 2001 NLCD having tiles that are 6.48 km × 6.48 km and covering 
the continental USA.
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• Select Geographic Criteria > Locations, then check the boxes for both Latitude 
and Longitude to prepare to specify landscapes covering the region of New 
England. New England lies in the box roughly between Latitude >40.5 and 
Latitude <45.1, and Longitude >−80 and Longitude <−69.5. Select Search 
using these criteria; the result will return more than 7500 landscapes. On the 
page showing search results, the locations shown in red are landscapes that sat-
isfy the search criteria. They should be located over the northeastern corner of 
the image, where New England is located within the continental USA.

Refer to the student guide to access a folder containing images of all of the land-
scapes returned from the search. In preparation for the next exercise, look through 
the images of these New England landscapes, noting land- cover patterns and espe-
cially the abundance and distribution of Deciduous Forest, represented in green.

EXERCISE 9: Estimating Histograms and Testing Expectations

• On a piece of paper, sketch the histogram that you would imagine to represent the 
percentage of Deciduous Forest among the landscapes of this heavily forested 
region. On the X-axis, place the numbers 0, 10, 20, … 100. These categories will be 
percentage values corresponding to different levels of Deciduous Forest abundance 
for the 6.48 × 6.48 km landscapes. The Y-axis will indicate the percentage of these 
landscapes that have values in each interval. For example, if you think that about 
10% of the landscapes of New England will have a percentage of Deciduous Forest 
between 50 and 60, draw a bar at Y = 10 from X = 50 to X = 60. Continue for the 
other ranges of percentages until you have sketched your anticipated histogram.

• Return to the Metaland interface and click Percentage of Land to learn about 
the frequency of different land covers in these landscapes. The page shows the 
basic statistics for the percentages of each of the land-cover categories within the 
chosen subset of landscapes.

• Find the entry for Deciduous Forest, and click View. On the resulting page you 
can see a histogram for that metric (proportion—the metric pi), for all landscapes 
in your subset.

• In the field below, note the box labeled Find the percentile of this value. In this box, 
you can enter any metric value, and the program will return the proportion of land-
scapes in your set that have lower values: that is, the percentile of that value. The 
median value in a set represents the 50th percentile; this is the value for which half 
the values in the set are lower, and half are higher. Look at the histogram and, through 
a process of trial and error, determine the median value of this set of landscapes.

(NOTE: Using your browser’s controls, you can save an image of the histogram 
itself for use in a report).

Q13  Did your estimate of the histogram of Deciduous Forest differ from that of 
the actual distribution, and if so, how? What might account for discrepan-
cies between one’s estimation of the histogram and the evidence from the 
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landscape metrics? In what ways does a histogram help assess and under-
stand the makeup of a landscape?

Q14 What are the values at the 33rd, 50th, and 67th percentile in this set?

EXERCISE 10: Histograms of Other Land-Cover Proportions

• Return to the results of the landscape search, and now view the histogram for the 
Cultivated Crops land cover.

Q15 Consider the following:
(a) Are there substantial differences in the shapes of the histograms of Deciduous 

Forest and Cultivated Crops?
(b) Were you equally able (or unable) to anticipate the look of the histograms of 

these land use categories?
(c) Now, consider other land-cover types and their histograms. Is there a pattern to 

the distribution of landscape percentages among the land covers in this data set?

Q16  If you selected another set with different criteria, do you expect that the shapes 
of these curves would be similar, nearly identical, or entirely different? That 
is, do you think that the histograms reveal a basic property of land cover in 
real-world landscapes?

 Part 4. Selecting Study Landscapes Along Gradients

In this section, you will use Metaland to identify landscapes with a wide range of 
amounts of edge habitat, but only within a subset of landscapes having a certain mix 
of proportions of deciduous forest and agriculture. With a little additional analysis 
in a spreadsheet program, Metaland’s output can be used to rapidly identify sam-
pling sites along a gradient of landscape metric values. You will identify landscapes 
according to given characteristics, and use the output to identify landscapes for 
potential field sampling.

EXERCISE 11: Controlling for Proportion and Total Edge

 1. Return to the home page of Metaland and select the NLCD 2001 data set.
 2. Use criteria of Latitude and Longitude to select landscapes that have certain 

landscape proportions within the same rectangular region of New England that 
was viewed in the previous exercise. As you did earlier, use the selection criteria 
to specify Latitude >40.5 and Latitude <45.1, and Longitude >−80 and 
Longitude <−69.5. For the proportion criterion (located in the Classes part of 
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the interface), request landscapes having greater than 30% and less than 50% 
Deciduous Forest (class 41), and greater than 5% Developed, Open Space (class 
21). When done correctly, this request should return more than 650 landscapes. 
This is the same set used in the Metric Finder section.

 3. Refer to the student guide to access a folder containing images of all of the land-
scapes returned from the search. Make a note of the index field for five or ten of 
the landscapes that look interesting to you. The index field is the string that looks 
like: x689y141s2.

 4. Return to the Metaland interface and click View All Landscapes to see a list of 
the landscapes for individual inspection. You can view any single landscape and 
its landscape metric values by clicking View Landscape on the right side of the 
page.

 5. For each landscape, Fragstats produces two distinct files for metric values: one 
for landscape-level metrics and another for class-level metrics. For this lab, we 
have downloaded the full set of these metrics for these landscapes for you, and 
done some of the formatting and graphing addressed in the following steps.

 6. Refer to the student guide to access the spreadsheet for this section, which con-
tains a number of pages with formulas and graphs that you can use to evaluate 
the landscapes.

 7. The first sheet contains the values as they were pasted into the spreadsheet 
immediately after downloading them from Metaland. The formulas in Sheet 2 
take the values in Sheet 1 and rank each landscape with respect to each metric 
value. To help you see the sizes of the values, cell values are color coded to indi-
cate whether a given landscape metric value is small, medium, or large in com-
parison to the other values for that metric in the given subset. Values that are 
marked “low” are shown in blue and are in the lowest 33% of metric values. 
Mid-sized values are those between the 33rd and 67th percentile of the metric 
values in the set and are colored yellow. The largest one-third of values for a 
given metric is shown in orange.

 8. We will use this set of landscapes and metrics to identify a gradient of Total 
Edge. Select the Total Edge metric (labeled te) between different land use cate-
gories of all types. Beginning with this subset, use the page with metric rank 
values to identify landscapes that are at percentile 20, 40, 60, and 80 with respect 
to the amount of Total Edge. (There may be several landscapes marked as being 
at a given percentile, due to rounding.) Note the unique identifiers of these land-
scapes for the next step.

 9. Return to the home page of Metaland and select View Landscapes by Identifier. 
Enter the unique identifiers for your four landscapes (from percentiles 20, 40, 60, 
and 80) in the text box to view their images on one page.

Q17  Judging by eye, do the four landscapes selected along the gradient have sub-
stantially different amounts of Total Edge? If you forgot the ordering of the 
landscapes by Total Edge, could you correctly sort them by eye for that met-
ric? What aspects of the landscapes make them easier or harder to sort, by eye, 
according to Total Edge?

J.A. Cardille and M.G. Turner



171

Q18  Return to the page to View Landscapes by Identifier. To the four landscapes 
you entered just above, add the identifiers of the five that you earlier identified 
as being interesting. View the summary statistics for these nine landscapes. 
With respect to Total Edge, how do these landscapes compare to those chosen 
along the gradient? Judging by visual inspection alone, can you correctly 
insert your four chosen landscapes along the gradient of Total Edge?

 Part 5. Synthesis

EXERCISE 12: Identifying Landscapes Along Two Gradients

Imagine a situation in which you wanted to identify landscapes along two simulta-
neous gradients: for example, Total Edge (metric te) and Effective Mesh Size (metric 
mesh). Using the values, colors, and landscape identifiers found in the spreadsheet 
of Exercise 4, try to find a landscape with low values for each metric—say between 
the 10th and 15th percentile for each. Is there a landscape listed in the spreadsheet 
that satisfies these two criteria?

To understand the potential relationships between landscape metrics, the spread-
sheet’s graphing abilities can be employed. On one of the sheets of the spreadsheet, 
we have made a scatterplot of the values of the two metrics in the set of New 
England landscapes.

Suppose you wanted landscapes for a 3 × 3 field study, built using landscapes 
selected with low, moderate, and high values for each of the two metrics. The scat-
terplot indicates where metric values are low (say, between the 1st and 33rd percen-
tile), moderate (between the 34th and 66th percentile), and high (between the 67th 
and 100th percentile). Suppose you wanted to identify ten landscapes for each of the 
nine combinations: for example, landscapes with low mesh and moderate te is one 
of the combinations.

Q19  Are there enough landscapes for each of the categories of your study? What 
potential risks are there in identifying these landscapes from the set?

Q20  How could you use the Metaland interface to accomplish this task of finding 
landscapes?

EXERCISE 13: Complementary Work with Metric Finder and Metaland

Metric Finder is linked to Metaland, and this linkage allows you to select a subset 
of landscapes in Metaland and explore and compare them in Metric Finder. The 
option to bring a subset of landscapes to Metric Finder is found on the same page in 
Metaland, where metric results can be downloaded for use in a spreadsheet.

Assume the role of an analyst tasked with identifying a set of landscapes, for a 
purpose developed by you or your instructor. For example, you might identify a set 
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of landscapes in Colorado with no discernable human activity within any of the 
landscapes, with the ultimate goal of identifying conditions in those landscapes that 
could make a new park. Develop a protocol for developing and using your subset, 
in which you:
• Use landscape metric criteria to select a subset of landscapes for consideration
• Export metrics and analyze their values, then use this analysis to select a pro-

posed set of metrics of interest for use within the subset
• Export the results to Metric Finder and use the interface to explore which metrics 

help you identify landscapes of interest for your park
• Return to Metaland with these new metrics and refine your selection

Write a report in which you describe the protocol and illustrate some of the land-
scapes that fit your criteria. Include an assessment of the similarities and differences 
of the landscape sets, the metrics that best describe them, and how the similarities 
or differences change when subsets of these landscapes are selected by geography.

EXERCISE 14: Designing Regional Comparisons

In your position at AMEC, you are interested in understanding landscape differ-
ences among regions. Beginning with the set of New England landscapes as one of 
two regions to consider, design, and implement a regional comparison of landscape 
pattern between New England and another region in the USA. Explain your sam-
pling design and the rationale for your selected metrics, what relationships you 
expected to observe, and present the results of your study of regional differences. 
Some statistical analysis will be required, as you will be sampling from the 
6-km × 6-km landscapes that cover the USA when evaluating regional differences. 
What are the advantages and limitations of interpreting landscape differences using 
Metaland and the NLCD data?
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Chapter 11
Using Spatial Statistics and Landscape 
Metrics to Compare Disturbance Mosaics

Monica G. Turner and Martin Simard

OBJECTIVES

The causes and consequences of disturbances are major research topics in landscape 
ecology (Foster et al. 1998; White and Jentsch 2001; Turner 2005, 2010). 
Disturbances are of particular interest because of their reciprocal interactions with 
landscape pattern—they both respond to and create spatial heterogeneity (Turner 
1987). Understanding the disturbance-created landscape mosaic is important for 
conserving resources and biodiversity, anticipating potential consequences of global 
change on disturbance regimes (Turner 2010), and managing landscapes in ways 
that mimic attributes of natural disturbances or keep a landscape within its historic 
range of variability (Perera et al. 2004; Long 2009). The spatial patterns created by 
disturbances can also provide novel insights into the state and dynamics of a land-
scape (Fraterrigo and Rusak 2008). Thus, disturbance has been a primary focus of 
landscape ecology for a long time (e.g., Turner 1987).

Disturbance-created heterogeneity also provides an opportunity to compare and 
contrast different approaches for quantifying spatial variability. Disturbances differ 
in severity (effects on the biota) across the landscape, and this variation can be 
quantified using continuous measures (e.g., the amount or proportion of tree basal 
area killed by disturbance) or represented categorically (e.g., high vs. low severity). 
These different types of data require distinct methods of analysis. Spatial statistics 
characterize the spatial dependence in continuous data, whereas landscape metrics 
quantify spatial pattern in categorical data (Gustafson 1998). How ecological 
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 interpretations differ based on these methods, and whether they provide comple-
mentary or redundant insights, is often not considered in landscape studies. Most 
studies use one or the other kind of data but not both. In this lab, students will com-
pare spatial patterns created by three different kinds of disturbance using spatial 
statistics and landscape metrics and then contrast the interpretations that emerge 
from these complementary approaches. Upon completion of this lab, students will 
have accomplished the following objectives.

Part 1. Using spatial statistics to compare mosaics generated by different 
disturbances:
 1. Quantify and compare landscape patterns generated by fire, insect outbreaks, 

and clear- cut harvesting in forested landscapes of Greater Yellowstone 
(Wyoming, USA) using spatial statistics applied to continuous measures of dis-
turbance severity;

 2. Learn to use and interpret output from GS+, a commercially available program 
for spatial statistics; and

 3. Gain experience fitting different theoretical models to empirical semivariograms 
of disturbance severity and understand how model choice can influence 
interpretation.

Part 2. Analyzing fire patterns using landscape metrics and spatial statistics:
 1. Describe and compare landscape patterns generated by fire in Greater Yellowstone 

using landscape metrics applied to categorical measures of fire severity using 
FRAGSTATS;

 2. Interpret the landscape metrics and evaluate the effects of different classification 
schemes on the numerical results and ecological interpretations; and

 3. Compare results obtained using spatial statistics (on continuous data) and land-
scape metrics (on categorical data) for quantifying fire patterns and determine 
whether these approaches provide complementary or redundant ecological insights.

This is an advanced exercise recommended for two successive class periods. This 
lab assumes basic understanding of semivariance and correlograms (completion of 
Chapter 5), as well as landscape metrics and the use of FRAGSTATS (Chapter 4). 
The lab also requires a geostatistics software program GS+ (© Gamma Design 
2015), which can be found online at https://www.gammadesign.com/. The software 
is available as a free 10-day demo version. Lastly, while not essential, familiarity 
with vegetation indices derived from remote sensing data (as in Chapter 1) is helpful.

 INTRODUCTION

Disturbance has long been recognized as an important driver of landscape heteroge-
neity and integral to understanding landscape dynamics (Watt 1947). A disturbance 
is defined as a relatively discrete event that disrupts the structure of an ecosystem, 
community, or population and changes resource availability or the physical 
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environment (White and Pickett 1985). Recent treatments of disturbance advocate 
for separating out environmental drivers, initial system properties, and physical and 
biological mechanisms by which the system is affected so that different kinds of 
disturbance can be more easily compared (Peters et al. 2011). Disturbances are 
interesting in that they both create and respond to spatial heterogeneity in the land-
scape, and this is one reason disturbance has received so much attention in land-
scape ecology (Turner 1987, 2010). Landscape ecological studies of disturbance 
focus on several aspects of these relationships (Turner and Gardner 2015).

A variety of attributes are used to characterize a disturbance regime. Included 
among these are the spatial location of the disturbance, the size and shape of dis-
turbed patches, and the variation in disturbance severity within the affected area. In 
this exercise, you will compare the spatial patterns created by three different distur-
bance types—fires, bark beetle (Dendroctonae) outbreaks, and clear-cuts—in the 
Greater Yellowstone Ecosystem (GYE).

 Study Area and Disturbances

The 80,000 km2 GYE is centered on Yellowstone National Park (YNP) and strad-
dles portions of Wyoming, Montana, and Idaho (Figure 11.1). The GYE is unique 
in interesting respects—most notably the extensive geothermal features and large 
populations of native wildlife for which the region is famous—but in many ways it 
is also representative of coniferous forest ecosystems in the northern US Rocky 
Mountains.

YNP encompasses ca. 9000 km2, most of which lies on a high (elevation ca. 
2100–2700 m) volcanic plateau with relatively gentle relief. Surrounding the plateau 
are higher, rugged mountains of various crystalline, sedimentary, and volcanic sub-
strates, as well as broad river valleys and basins characterized by a semiarid climate. 
Approximately 80% of YNP is dominated by lodgepole pine (Pinus contorta var. 
latifolia) forest, although subalpine fir (Abies lasiocarpa), Engelmann spruce (Picea 
engelmannii), and whitebark pine (Pinus albicaulis) are locally abundant at high 
elevations. At lower elevations, Douglas-fir (Pseudotsuga menziesii) and aspen 
(Populus tremuloides) forests grade into sagebrush (Artemisia spp.) steppe and grass-
lands. The climate is characterized by cold, snowy winters and dry, mild summers.

Portions of the GYE have a history of intensive resource exploitation, including 
logging, grazing, market hunting, and mining (as in other parts of the Rocky 
Mountains), as well as an expanding wildland-urban interface on private lands. The 
GYE differs from much of the rest of the Rocky Mountain region, however, in that 
much of the pre-Columbian flora and fauna remain intact, in part because the GYE 
contains one of the largest tracts of wild, undeveloped land in the continental USA 
(Gude et al. 2006). This largely pristine condition makes Yellowstone uniquely suit-
able for research into natural landscape patterns and processes at multiple scales 
and comparisons with human-created patterns.

We will consider two components of the natural disturbance regime: fire and bark 
beetles. Stand-replacing fire is an important component of the natural disturbance 
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regime in the GYE and in many conifer forests throughout western North America 
(Turner and Romme 1994; Schoennagel et al. 2004). Infrequent, high- severity fires 
kill most of the trees either via intense surface fire or fire spread through the crowns 
of the trees. Climate, particularly severe regional drought, sets the stage for occasional 
years of extensive conflagrations. Stand-replacing fires occur in the GYE at 100–300-
year intervals (Romme 1982; Romme and Despain 1989; Millspaugh et al. 2000; 

Figure 11.1 Location of the Greater Yellowstone Ecosystem, USA, from which the landscape 
maps of spatial patterns of disturbance used in these exercises were obtained
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Schoennagel et al. 2003). In 1988, large fires affected more than 30% of the GYE and 
created a complex spatial mosaic of burned patches that varied in size, shape, and 
severity (Turner et al. 1994). Fire weather was extreme: it was the driest summer on 
record in YNP (Renkin and Despain 1992), as dry cold fronts brought high wind and 
lightning but no rain. The 1988 fire season is considered to have ushered in a new era 
of fire activity in the West (Running 2006), and stand-replacing fires have continued 
to occur during many subsequent summers.

Bark beetles are also a key element of the natural disturbance regime in the 
GYE, and insect outbreaks have been recorded since 1922 (Furniss and Renkin 
2003). Bark beetles are phloem-feeding specialists native to temperate and boreal 
coniferous forests (Raffa et al. 2008; Bentz et al. 2010). These insects are important 
because they kill healthy trees over extensive areas during episodic outbreaks. In 
contrast to fire, however, bark beetles do not kill all trees within a stand because they 
preferentially select larger trees. Furthermore, the forest floor and duff layer remain 
intact following bark beetle attack. Between 2003 and 2012, both mountain pine 
beetle (MPB) and Douglas-fir beetle (DFB) were active in lodgepole pine and 
Douglas-fir, respectively, in the GYE (Simard et al. 2012). Understanding the 
dynamics of both natural disturbances remains important throughout forests of 
western North America. The extent and severity of bark beetle epidemics have 
reached unprecedented levels (Raffa et al. 2008), and the frequency of large, severe 
fires continues to increase (Westerling et al. 2006, 2011). These trends are expected 
to continue because climate change—especially warmer temperatures, earlier snow-
melt, and more severe summer droughts—is implicated for both disturbances.

We will also consider an anthropogenic disturbance: clear-cut harvesting. 
During the mid-twentieth century, many national forests in the GYE were subject to 
harvesting where merchantable trees were clear-cut in strips or patches distributed 
across the forest (Tinker et al. 2003). Forestry activities were particularly conspicu-
ous along the western boundary of YNP where the differences in landscape patterns 
inside and outside of the national park provide an illustration of how human actions 
can change landscape patterns (see Figure 11.1).

 Part 1. Using Spatial Statistics to Compare Mosaics Generated 
by Different Disturbances

In this first part of the lab, you will compare the spatial structure of the three differ-
ent disturbance types (fires, bark beetle outbreaks, and clear-cut harvest) in the 
GYE. Five landscapes (5 × 5 km) of each disturbance type were sampled from dis-
turbance maps generated from remote sensing data (Landsat, 30-m pixels, n = 15 
different maps). These disturbance maps were created by analyzing differences 
between images taken before and after the disturbance event (Figure 11.2).

The fires and clear-cuts both date from the late 1980s, and the severity of these 
disturbances is represented here by a disturbance index based on the Normalized 
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Figure 11.2 Landscape maps of spatial patterns created by three different types of disturbance in 
Greater Yellowstone corresponding to the data files used in Part 1. See text for description of map 
categories and interpretation. Areas of more severe disturbance are in redder colors
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Burn Ratio (NBR). The NBR uses a band ratio (similar to the NDVI, described in 
Chapter 1) to measure disturbance severity within each grid cell based on the reduc-
tion in live biomass after the disturbance (Key and Benson 2006). The NBR uses 
two bands of Landsat that are most affected by fire and logging but in opposite 
ways. The near-infrared band is sensitive to decreases in forest biomass, and a short-
wave infrared band captures increases in extent of bare soil. To create the index, 
these two bands are combined mathematically to calculate the NBR for each pre- 
and post-disturbance image. The post-disturbance NBR map is subtracted from the 
pre-disturbance NBR map to generate a difference map that contains values of 
dNBR (delta Normalized Burn Ratio), which represents the change between the 
pre- and post-disturbance image. Here, we use the dNBR value as an index of dis-
turbance severity. Unburned and unlogged areas show little change in NBR between 
the two image dates, and thus dNBR values are very low. Areas burned or clear-cut 
show large changes in NBR between the two image dates, and as a result, dNBR 
values are high. Greater values of dNBR correspond to higher disturbance severities 
(see Figure 11.2).

The bark beetle outbreak map was created using a similar approach with pre- and 
post-disturbance images but with a different disturbance index, the Moisture Stress 
Index (MSI). The MSI is well suited to detect subtle changes in forest biomass, like 
those created by insect outbreaks that selectively kill some trees and do not directly 
affect the forest understory (Jin and Sader 2005). The dMSI (delta Moisture Stress 
Index) values were linked to field-based measurement of beetle-caused tree mortal-
ity to map the outbreak severity as measured by cumulative basal area beetle- 
killed (% BABK) between 1999 and 2007 (see Figure 11.2). This timeframe 
includes an outbreak first recorded in 2003 that lasted for several years. As with 
dNBR, greater values of dMSI indicate higher severity of the bark beetle outbreak 
(i.e., more beetle- induced tree mortality).

Although the remote sensing indices differ, dNBR and dMSI both quantify dis-
turbance severity and return continuous values for each pixel. In all maps, non- 
forest pixels were removed from analysis, and undisturbed forest pixels were 
assigned an index value of zero.

EXERCISE 1: Describing Disturbance Patterns Qualitatively

Begin this lab by inspecting Figure 11.2 and considering those patterns while 
answering the next question. Your instructor may suggest that you complete this 
exercise prior to arriving in class.

Q1  Qualitatively describe the spatial patterns of the three disturbance types 
(Figure 11.2) in your own words. How would you characterize the pattern pro-
duced by each disturbance? How are they visually similar and different?
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EXERCISE 2: Quantifying Disturbance Patterns Using Spatial Statistics

Next, describe the spatial patterns of each disturbance type using variograms and 
correlograms computed using GS+ software.

 1. Thoroughly read the handout Instructions for GS+ and familiarize yourself 
with the general steps and options in the software before proceeding further 
(Your instructor may suggest you read this prior to coming to class, to save valu-
able class time).

 2. Generate an isotropic variogram and a correlogram (see GS+ handout) for each 
sample landscape using GS+. You will need to open each file separately in GS+. 
For each variogram, use an exponential model so that comparisons can be made 
using the same theoretical model. Remember to set the Lag Class Distance to 
30 so that it matches the resolution of the data, which is 30 m. Be sure to record 
summary statistics (e.g., mean, minimum, maximum) for the response variable 
(Z) when you inspect the results, as well as the information described below.

 3. In Table 11.1, record the parameter estimates listed below from each variogram. 
Save these results in an Excel worksheet so that you can produce the required 
graphs and use these results later in Part 2.
• Nugget (C0), the intercept of the model variogram representing variance at 

scales less than the minimum lag distance or variance arising from measure-
ment error that cannot be resolved

• Sill (C0 + C), or maximum semivariance
• Range (A), which represents the limit of spatial dependence or the distance 

over which measurements are autocorrelated
• Proportion of structural variance [C/ (Co + C)], which estimates the magni-

tude of spatial dependence in the data
• Fit (R2) of the model to the data

NOTE: When reporting numerical information, be consistent and appropriate in 
your use of significant digits. Do not report unrealistic precision, and be consistent 
in your summaries so the values can be easily compared.

 4. Using the same landscape data file, compute the correlogram. In Table 11.1, 
record the parameter estimates below from each correlogram. Save the results in 
an Excel worksheet.
• Magnitude of the largest correlation (usually r for the first lag distance)
• Lag distance at which the correlogram declines to approximately r = 0.2
• Lag distance at which the correlogram declines to approximately r = 0

 5. Repeat the above steps for all landscapes (n = 15).
 6. Using the parameter estimates in Table 11.1, calculate the mean of each param-

eter for each disturbance type (so n = 5 for each mean). Create a bar graph (with 
error bars of plus and minus one standard error for the 5 replicates) of the mean 
estimated range value (on the Y-axis) by disturbance type (classes on the X-axis). 
Create another bar graph for the mean values of the proportion of structural 
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variance, and the lag distance at which the correlogram declines below r = 0.2 
(thus, you will produce three graphs).

 7. To compare results obtained from the variograms and correlograms, use the 
observations from Table 11.1 to create a scatterplot of the lag distance at which 
the correlogram declines to about r = 0.2 (on the Y-axis) vs. the range estimate 
from the variogram (on the X-axis). For this plot, use all observations, irrespec-
tive of disturbance type (n = 15). Add a linear trend line and show the coefficient 
of regression (R2) and the equation.

Q2  Describe the spatial patterns of each disturbance type using the variograms and 
correlograms computed in GS+ and explain the relationship between the statis-
tics and the qualitative description from Q1. Use the results (Table 11.1) and 
graphs you produced, and reference these appropriately to support your inter-
pretations and address these aspects:
• Make sure to discuss the overall magnitude of semivariance in the data, as 

well as the proportion of that variance that reflects spatial dependence (i.e., 
autocorrelation), the fit of the model, and the estimated distances (range) 
over which the response variables are autocorrelated.

• Use estimates of r from the correlograms when thinking about the strength 
of the autocorrelation.

• Inspect the scatterplot. Do the semivariograms and correlograms for the 
same map(s) lead to consistent interpretations of the spatial patterns?

Q3  Interpret the relationship between the spatial statistics and the ecological processes 
(fire, insect outbreak, and clear-cutting) associated with each disturbance type. 
• Is there any consistent “signature” of these disturbance patterns that relates 

to the different mechanisms that generate them?
• Within a particular disturbance type, do the results suggest different condi-

tions that may have influenced the disturbances? Use the parameter esti-
mates in Table 11.1 and your graphs to answer this question.

EXERCISE 3: Understanding Differences Among Theoretical Models of 
Semivariance

Select one of the three disturbance types (your choice) to explore how quantitative 
results and interpretations can vary among different theoretical models (exponen-
tial, spherical, linear, and Gaussian) fit to empirical semivariance values.

 1. For the five landscapes within the disturbance type that you selected, fit three 
additional theoretical models (spherical, linear, Gaussian) to the empirical 
semivariogram.

 2. In Table 11.2, record the parameter estimates for each additional model (i.e., 
nugget, sill, range, proportion of structural variance, and fit) and in an Excel 
worksheet. Examine the range estimates and proportion of structural variance 
and compare their mean values among theoretical models.
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Q4  How do your descriptions of spatial pattern and interpretations change with dif-
ferent theoretical models fit to the semivariance? Which of the theoretical mod-
els provides the best fit for the data, and is this consistent across each of the five 
landscapes? How will the choice of model influence the scientific conclusions 
that can be drawn from this analysis, and why is that important?

OPTIONAL EXERCISE 4: Kriging Disturbance-Severity Patterns

A valuable use of semivariance analysis is to interpolate expected values and gener-
ate a continuous map of the variable of interest. Select one of the disturbance types 
and use the results from the semivariogram analysis to krige a map of disturbance 
pattern. Depending on the disturbance you select, the kriged map will be a continu-
ous landscape of dNBR or dMSI values that share the same statistical properties as 
the data used in computing the semivariance. How does the kriged map compare 
with the original map from which spatial dependence was quantified?

Table 11.2 Results obtained for different theoretical models fit to empirical semivariograms of the 
same disturbance type.
Disturbance type = __________________________________

Replicate 
map Model Fit (R2)

Nugget 
(Co)

Sill 
(Co + C)

Prop. 
structural 
variance

Range (A),  
in m

1 Exponential
Spherical
Gaussian
Linear

2 Exponential
Spherical
Gaussian
Linear

3 Exponential
Spherical
Gaussian
Linear

4 Exponential
Spherical
Gaussian
Linear

5 Exponential
Spherical
Gaussian
Linear

Note that the results for the exponential model can be copied here from Table 11.1
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 Part 2. Analyzing Fire Patterns Using Landscape Metrics 
and Spatial Statistics

Disturbance is often mapped in discrete classes (such as categories that represent 
both high and low severity and undisturbed areas). These classes are often derived 
from continuous measures, such as those used in Part 1, by setting a threshold value 
to convert the continuous variable to a category. The choice of threshold and how 
many categories to represent in a map of disturbance severity can influence the 
quantitative measures of spatial pattern, including patch size, patch shape, connec-
tivity of disturbed area, distance to edge, etc.

In the exercises in Part 2, you will compute landscape metrics for fire patterns 
(from the same five landscapes of fire-created patterns in Part 1) using categorical 
data analyzed in FRAGSTATS. You will compare two categorization schemes, each 
with a different minimum dNBR threshold for defining burned areas (Figure 11.3), 
to explore the effects of classification scheme on numerical output. Binary maps of 
fire pattern (which use only two categories, burned vs. unburned) that were derived 
from the continuous maps of dNBR are provided for you. The dNBR maps were 
reclassified to categories using two alternate classification schemes. Maps of all 
burned areas used a low threshold (dNBR > 170) and include a range of burn severi-
ties, i.e., all areas affected by fire. Maps of high-severity burned areas used a high 
threshold (dNBR > 600) and include only the upper end of burn severities where 
fires would all be stand replacing.

EXERCISE 5: Selecting Landscape Metrics

For each of the ten landscapes (2 thresholds × 5 reps = 10 landscapes), you will use 
FRAGSTATS to characterize the spatial patterns of the burned landscapes. Choosing 
which metrics to quantify in any analysis is an important step, as each metric pro-
vides information about some aspect of pattern, and many metrics are redundant. 
You will include the five metrics listed below in your selection plus five others of 
your own choosing. You must have a rationale for selection of each and should 
choose indices that you think will have different (complementary) information 
about the spatial patterns.
• Landscape-level metrics: edge density (ED) and contagion (CONTAG)
• Class-level metrics: proportion of landscape occupied (PLAND), number of 

patches (NP), and mean patch size (AREA_MN)

Q5  Provide the rationale for each metric you selected for analysis. Which among 
these do you expect to be related to the variogram parameters, and how might 
they be related? Which metrics do you expect to provide new/different informa-
tion about the spatial pattern? Explain your reasoning.
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Figure 11.3 Landscape maps of spatial patterns created by fire in Greater Yellowstone. Continuous 
maps are the same as in Figure 11.2. The “low-threshold” maps identify all cells that were affected 
by fire (i.e., range of fire severities). The “high-threshold” maps identify only patches of high-
severity fire and exclude areas of low-severity fire

11 Using Spatial Statistics and Landscape Metrics to Compare Disturbance Mosaics



188

EXERCISE 6: Quantifying Fire Patterns Using FRAGSTATS

Students are urged to consult the documentation for FRAGSTATS, which is excel-
lent and can be downloaded from http://www.umass.edu/landeco/research/fragstats/
fragstats.html.

It is assumed that students know how to run FRAGSTATS on their computer 
system (as you learned in Chapter 4). Use an 8-neighbor rule for patch identifica-
tion, and set the cell size to 30 m. More details on the appropriate settings (rows, 
columns, cell size, etc.) are given in the Instructions for FRAGSTATS, which 
accompanies this chapter. Your output data (landscape metrics as well as class-level 
metrics for burned and unburned forest) should be saved in Excel for subsequent 
use. In these datasets, class 0 = unburned and class 1 = burned.

Once you have generated the output files from FRAGSTATS for all ten land-
scapes, compare the metric results for each of the classification schemes (mean with 
error bars, n = 5) using either graphs or a table. For class-level metrics, only include 
results for burned habitat. However, you will need metrics for burned and unburned 
habitat for some of the questions below.

Q6  Briefly describe the spatial pattern of the landscapes that used the low dNBR 
threshold vs. the maps of high-severity fire only (i.e., the high dNBR threshold) 
(Figure 11.3). How did the assignment of the low and high threshold affect the 
quantitative estimates of burn patterns? What is your ecological interpretation 
of these patterns, and does your interpretation change with the classification 
scheme?

EXERCISE 7: Using Spatial Statistics and Landscape Metrics to Compare 
Disturbance Mosaics

Next, you will compare and contrast the results from Part 1 (spatial statistics with 
continuous data) with the results generated above in Part 2 (analyzing categorical 
data). To do so, follow these steps:
 1. Plot the landscape metrics (Y-axis) vs. the range estimates (X-axis) obtained 

from the semivariogram analyses in Part 1. When plotting class-level metrics, 
include both the burned and unburned categories on your plots by assigning a 
different symbol.

 2. Plot the landscape metrics vs. the proportion of structural variance obtained 
from the semivariogram analyses in Part 1. When plotting class- level metrics, 
include both the burned and unburned categories on your plots by assigning a 
different symbol.

 3. Although the sample size is small, compute correlation coefficients for each rela-
tionship and report a correlation table.

Q7  Given the pairwise comparisons generated between output from spatial statis-
tics vs. landscape pattern indices, as well as how you interpreted disturbance 
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patterns using these quantitative approaches separately, which of your expecta-
tions (from Q5) were supported, and which were not supported? How are these 
analysis methods similar and different, and do they provide complementary or 
redundant information? Does your ecological interpretation change qualita-
tively with the methods used?

Q8  What spatial analysis approaches would you recommend for future studies of 
disturbance patterns and why? Are certain disturbance agents potentially best 
suited to continuous vs. categorical representation, and if so, why?
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Part IV
Applications for Conservation and 

Assessing Connectivity

A variety of recent developments now better support conservation planning and con-
nectivity assessment. This module explores these tools and presents a user-friendly 
start for those less familiar with these approaches. Chapter 12 introduces the basic 
uses of network analysis (aka graph theory) for assessing connectivity from the 
perspective of different species and assumes no prior knowledge of network con-
cepts and terminology. Chapter 13 introduces the basic components of Marxan, one 
of the most widely used conservation planning tools for reserve design decisions. 
The last two chapters in this module provide advanced tools most relevant for 
research in this arena. Chapter 14 explores advanced graph theoretic approaches 
using Conefor software, which is used widely throughout Europe for conservation 
planning. This software can assess network connectivity while incorporating habitat 
quality and identify critical source areas and stepping stones for different species. 
Chapter 15 requires the use of R software and demonstrates the statistical ways 
meta-communities can be examined across a landscape, incorporating important 
multispecies perspectives.
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Chapter 12
Assessing Multi-Scale Landscape Connectivity 
Using Network Analysis

Todd R. Lookingbill and Emily S. Minor

OBJECTIVES

Landscape connectivity has implications for many ecological processes, including 
spread of invasive species and conservation of native ones. Because species have 
different minimum area requirements and different movement abilities, landscape 
designs suitable for one species (or group of species) may be inappropriate for other 
species. Methods from network analysis can be used to combine information on 
landscape pattern and species life history characteristics for species-specific assess-
ments of potential connectivity. The lab is intended to provide students with the 
following:

 1. An introduction to the concepts of landscape connectivity and network analysis;
 2. Practice defining the basic elements of the landscape network including nodes, 

links, and components;
 3. Exploration of simple measures of connectivity related to dispersal, home range, 

and species persistence;
 4. Ways to construct and compare landscape networks for different species with 

differing perceptions of the landscape;
 5. Consider how protected areas form networks of potential connectivity; and
 6. Discuss simplifying assumptions of the approach and how methods for quantify-

ing connectivity may differ in contrasting landscapes.
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Exercises in Part 1 assess potential connectivity on a highly fragmented simu-
lated landscape for two species with different life history characteristics, using pen-
cils/markers and the provided map. You will then calculate and compare two simple 
metrics of landscape connectivity for these two networks. In Part 2, you will exam-
ine the consequences of landscape connectivity for protected lands in the Willamette 
Valley ecoregion of the United States in a more realistic example. You will examine 
three species with differing minimum area requirements and movement abilities 
(ranging from large carnivores to rodents). While a variety of software programs 
can automate most of these analysis procedures, it is worthwhile to construct your 
first networks “by hand” as you learn the concepts and calculations; thus, the exer-
cises in this chapter have been simplified and do not require a computer. Two sub-
sequent chapters in this text (see Chapters 14 and 20) provide more detailed 
applications of network analysis that build on and assume familiarity with the con-
cepts in this lab.

 INTRODUCTION

One of the biggest problems in conservation biology and biogeography today is 
the alteration of landscapes and loss of native habitat (Richardson and Whittaker 
2010). Landscape fragmentation has potential implications for many ecological 
processes. As habitats become more fragmented and separated, and the interven-
ing matrix becomes more dangerous and inhospitable, native populations experi-
ence a loss of genetic variation and/or permanent extinction. Barriers to immigration 
and recolonization may be especially detrimental as species attempt to adapt to 
other stressors such as those associated with climate change. As a result, it has 
become essential to accurately measure landscape connectivity and understand its 
effects on major ecological and evolutionary processes. Landscape ecology offers 
specific tools for the quantitative study of landscape connectivity among frag-
mented habitat patches.

 Landscape Connectivity

Landscape connectivity is a measure of how well the landscape facilitates or 
impedes movement among resource patches (Taylor et al. 1993). In fragmented 
environments, connectivity of habitat patches is important for movement of genes, 
individuals, populations, and species over multiple time scales (Fahrig and Merriam 
1985). Over the short term, it affects the success of juvenile dispersal and thus 
recolonization of empty habitat patches (Clergeau and Burel 1997). At intermediate 
temporal scales, connectivity affects migration, persistence of metapopulations 
(Hanski and Gilpin 1991; Ferreras 2001), and genetic diversity (Dixo et al. 2009; 
Angelone and Holderegger 2009). Over longer time frames, connectivity influences 
the ability of species to adapt, expand, or alter their ranges in response to climate 
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change (Lyford et al. 2003; Opdam and Wascher 2004). Habitat connectivity is 
especially important when habitat is degraded, rare, fragmented, or otherwise 
sparsely distributed (Flather and Bevers 2002; King and With 2002; Fischer and 
Lindenmayer 2007).

Landscape connectivity can be defined in many ways (Calabrese and Fagan 
2004). Structural connectivity refers simply to landscape pattern and is not nec-
essarily associated with the movement behavior of any particular organism. 
Functional connectivity, on the other hand, includes information on the move-
ment of organisms in response to landscape pattern; this is a species-specific mea-
sure of connectivity. Functional connectivity may take two forms: actual 
connectivity, which requires detailed observations of the movement of individu-
als, and potential connectivity, where life history data on mobility are used to 
estimate movement pathways. Potential measures of connectivity, such as those 
derived from network analysis, are thought to be the most cost effective for 
addressing questions of basic ecology and applied natural resource management in 
both terrestrial and marine ecosystems (Calabrese and Fagan 2004; Grober-
Dunsmore et al. 2009).

It is also necessary to distinguish between landscape connectivity, where con-
nectivity is seen as a property of the entire landscape, and patch connectivity, 
where connectivity is seen as a patch-level attribute (Kindlmann and Burel 2008). 
Within a landscape, each patch may have a different level of connectivity—some 
may be highly connected to other patches while others may be completely isolated. 
Methods of network analysis, based on the mathematics of graph theory, are useful 
here as well. The patch-based data structure lends itself naturally to assessment at 
both of these levels.

 Network Analysis

Network analysis has been proposed as a simple solution to unify and evaluate mul-
tiple aspects of habitat connectivity (Kadoya 2009; Urban et al. 2009). Although 
relatively recently introduced to landscape ecology (Urban and Keitt 2001; Jordan 
et al. 2003), network analysis is a well-developed body of research often used in the 
computer and social sciences that quantifies connectivity and flow in networks 
(Harary 1969). A network is a set of nodes (points) connected by links (lines); a 
link between points indicates a connection between them. In the case of landscape 
networks, nodes represent habitat patches or local populations, and links indicate 
interaction or dispersal among populations (Figure 12.1). The approach can quan-
tify either structural or functional connectivity, but, because it typically uses infor-
mation on dispersal processes to define patch connections, it is especially useful for 
quantifying potential connectivity.

Nodes and links are the two fundamental elements that define the landscape net-
work. Discrete patches of habitat are represented as nodes, invoking an island view 
of discrete habitat islands in a “sea” of nonhabitat (i.e., the matrix). The network 
approach connects patches with links if they are within some user-specified (and 
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preferably ecologically relevant) distance of each other or connected by corridors. 
Networks can be represented graphically, as in Figure 12.1, or in a connectivity 
matrix. A connectivity matrix is a table with information about the connectivity (or 
lack thereof) of every pair of nodes. The links might be binary (connected or not) or 
they might be weighted, specifying the strength of a connection between two nodes. 
For example, the weights might represent geographic distance or likelihood or rate 
of dispersal. Links also might indicate movement in multiple directions among 
patches or they might be directional, designating preferred pathways of flow.

Scores of metrics are available for characterizing connectivity based on proper-
ties of the network (Pascual-Hortal and Saura 2006; Bodin and Norberg 2007; 
Kindlmann and Burel 2008). Some of these are relevant to properties of the entire 
landscape—i.e., landscape connectivity. Others assess connectivity of an individual 
habitat patch—i.e., patch connectivity (Table 12.1). At the landscape scale, groups 
of connected patches are called components (Figure 12.1). By definition, dispersal 
can occur among patches within a component but not among patches of different 
components. One rather intuitive measure of landscape connectivity is an index of 
the size of the largest component, simply calculated as the proportion of suitable 
habitat on the landscape that is connected within the largest component (Ferrari 
et al. 2007). This metric is informative about the potential for large-scale population 
 processes on the landscape: many small components suggest isolated subpopula-
tions, while large components suggest a well-mixed population.

Another basic measure of landscape-level connectivity is the link density of the 
network. Link density is defined as L/[n(n−1)/2] where L and n are the number of 

Figure 12.1 An example of a landscape network with network features identified. Links are 
drawn from node to node (i.e., patch centroids), as is conventional, even though the distances are 
measured from patch edge to edge. All patches (shaded polygons) in this example are considered 
large enough to be suitable habitat for the species of study. Largest component = 0.77; link density 
= 0.18; degree centrality of labeled node = 2 links; domain of labeled node = 10 nodes
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links and nodes in the network, respectively (Royer et al. 2008). The denominator 
represents the maximum POSSIBLE number of links of links in the network. 
Landscapes with a large number of links relative to the number of patches should 
be well connected. The more links, the greater the redundancy in the network and 
the less vulnerable the landscape to the loss of any individual connection (e.g., 
through loss of habitat or addition of a dispersal barrier such as a road). 
Systematically removing either the nodes (Urban and Keitt 2001) or links 
(Lookingbill et al. 2010) from a network and evaluating the effects on connectivity 
can be an informative exercise for evaluating the vulnerability of landscapes to 
habitat loss and fragmentation.

Connectivity metrics also can be used to examine more localized issues of patch 
occupancy, population stability, and genetic diversity. Patch-level metrics are useful 
for this purpose because they can quantify the structural importance of habitat patches 
within the landscape network (Galpern et al. 2011). Two commonly used measures 
are degree centrality and domain (Table 12.1). Degree centrality is the number of 
direct connections for a given habitat patch (nearest neighbors). This is ecologically 
similar to the number of patches within a given distance or patch density (e.g., van 
Dorp and Opdam 1987). A hub is a node with very high degree (i.e., a patch with 
many neighbors), while an isolated node has no neighbors (Figure 12.1). From an 
applied perspective, hubs might be identified and targeted for protection to facilitate 
rapid species migration. Domain is a measure of the number of other nodes that are 
reachable from a node, which is equivalent to the size of the component containing 
the node (De Nooy et al. 2005). While these patch-level metrics describe connectivity 
of individual patches, they measure connectivity at different scales. Degree measures 
connectivity at the most local scale (the number of immediate neighbors), while 
domain measures how connected a patch is to the broader landscape.

Table 12.1 Definitions of network connectivity metrics used in these exercises

Term Units Definition

Landscape- 
level metrics

Largest 
component

Unitless Area of habitat contained in the largest component 
(HLC) divided by the total amount of suitable 
habitat area (HT) where only patches ≥ minimum 
size are considered suitable. HLC/HT

Link density Unitless Number of links (L) in the network divided by the 
maximum number of links possible. L/[n(n−1)/2]; 
where n = number of suitable nodes

Patch-level 
metrics

Degree 
centrality

Links Total number of links for a node. This is a very 
local measure of patch connectivity (i.e., only 
accounts for nearest neighbors)

Domain Nodes Total number of nodes reachable from the node. 
This is a larger-scale measure of patch 
connectivity (i.e., extending to entire component)
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 Conservation Networks

Landscape ecology has become highly invested in habitat connectivity and its impli-
cations for populations (Tischendorf and Fahrig 2000; Fahrig 2003; Calabrese and 
Fagan 2004; Crooks and Sanjayan 2006; Fischer and Lindenmayer 2007), and the 
application of network analysis has erupted over the last few years. Network analysis 
offers a valuable set of tools for conservation that are visually intuitive, computation-
ally efficient, and easily interpretable for conservation management. In particular, a 
network representation is often used to invoke a metapopulation model with sub-
populations interacting across a fragmented landscape (Estrada-Pena 2005). Network 
analysis has been applied to the design and assessment of reserve networks (Saura 
and Pascual-Hortal 2007; Minor and Lookingbill 2010), the identification of impor-
tant movement corridors or habitat linkages (Jordan et al. 2003; Morzillo et al. 2011), 
and the detection of population sources and sinks (Minor and Urban 2007; Treml 
et al. 2008). Because the construction of the landscape network is dependent upon 
species life history characteristics, most of these applications are species specific.

Species have different perceptions of the landscape in which they live. These 
perceptions inform what constitutes a patch of suitable habitat, as well as the willing-
ness to traverse through the matrix to a neighboring patch (Pe'er and Kramer- Schadt 
2008). In network terms, the nodes and the links in any network will likely differ for 
different species on the same landscape. Large-scale conservation plans should con-
sider landscape connectivity from the perspective of all relevant species groups. 
Generalizations for different species groups are valuable for multi-species applica-
tions such as designing green infrastructure or marine protected-area networks. For 
mammals, there is a strong linear relationship between what a species perceives as a 
patch (a function of home range size) and its maximum possible dispersal distance 
(Bowman 2003). Both of these factors scale with body size such that small mammals 
have small home ranges and short dispersal distances; intermediate- sized mammals 
have intermediate home ranges and intermediate dispersal distances; and large mam-
mals have large home ranges and longer dispersal distances. This allometric scaling 
relationship can be used to construct landscape networks to evaluate connectivity of 
protected-area networks for general classes of mammals based on their body size 
(see West et al. 1997 for further background on allometric scaling laws).

Spatial data about the protected areas in the United States are available from the 
Conservation Biology Institute (CBI 2012). Such data could represent potential 
patches for use in a network analysis. For example, reserves could be identified that 
meet the minimum home range requirements of a particular group of species (e.g., 
1000 ha for large mammals). Two reserves could be considered linked if they were 
as close as (or closer) than the maximum dispersal distance for the species group 
(e.g., 100 km for large mammals). Network representations could be constructed for 
different species groups, and the resulting networks would differ in both the spatial 
configuration of patches (e.g., the reserves included in a large-mammal protected- 
area network would be a subset of the reserves in a small-mammal protected-area 
network) and the rules used to create links (e.g., large mammals have the potential 
to travel farther than small mammals).
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To learn the basic concepts of network analysis, Part 1 begins with a simulated 
landscape and hypothetical species to illustrate two metrics of landscape connectiv-
ity. In Part 2, we present protected-area networks based on CBI data for three mam-
mals in the Willamette Valley ecoregion of the western United States. The three 
networks facilitate comparisons among species inhabiting the same landscape in 
order to illustrate metrics of patch connectivity.

 Part 1. Introduction to Landscape-Level Connectivity

Figure 12.2 Hypothetical landscape for Exercise 1. Habitat patches are labeled according to their 
size. The total number of habitat cells (shaded) on the landscape is 230 divided among 48 patches. 
Note that not all of this area is suitable for both species and depends on the size of the patch

EXERCISE 1: Constructing Networks by Hand

In this exercise, you will assess potential connectivity for two species on a simu-
lated landscape with a high level of fragmentation (13% of the habitat remains on 
the landscape). Your first step is to construct the landscape networks using a pencil, 
the map found in Figure 12.2, and the life history characteristics described below. 
You will then calculate two simple metrics of landscape connectivity and compare 
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the values for the two networks. Although computer programs can be used to auto-
mate most of these processes, it is a worthwhile exercise to practice constructing a 
network by hand.

 1. Print (or copy) Figure 12.2.
 2. From this map of potential habitat, identify the suitable habitat patches (or nodes) 

that meet the minimum area requirement for a hypothetical small mammal (see 
Table 12.2). Shade or color these areas.

 3. Next, on either separate pieces of paper or in different colors on the same map, 
identify and shade the patches that meet the minimum area requirements for a 
large mammal as defined in Table 12.2 (i.e., identify its suitable habitat).

 4. Using the maximum dispersal distances (defined in Table 12.2), draw the links 
among nodes of suitable habitat for each of the two species. Links should be 
drawn and measured as the shortest distance between patches. To do this, start 
counting from the edge of a habitat patch; diagonal distances count as only one 
cell length so it is possible to move in eight directions from a given cell (i.e., an 
8-neighbor rule). If the edge of a new habitat patch is reached within the allow-
able number of steps, then the two patches are connected. Dispersal can occur 
across any kind of cell (habitat or nonhabitat).

 5. Using the definitions provided in Table 12.1, calculate the largest component 
index and link density for each of the two species and add these values to 
Table 12.2.

Q1  Which species had the greatest connectivity for this landscape (by measure 1 
(the largest component index), by measure 2 (link density)? Show your work.
 (a) How do you think the differences in landscape-level connectivity would 

affect the long-term persistence of the two species on the sample 
landscape?

 (b) Landscape connectivity measures by themselves may not provide sufficient 
information for a species conservation plan. How might the total amount of 
habitat and number of patches in each of the networks also be important for 
the long-term persistence of a species? What other information about the 
landscape would be useful?

Table 12.2 Landscape-level connectivity metrics for Exercise 1

Minimum  
habitat  
requirement (cells)

Maximum  
dispersal  
distance (cells)

Largest  
component  
index

Link 
density

Small 
mammal

 1  2

Large 
mammal

16 32

The largest component index and link density should be calculated for the two species and inserted 
in the table

T.R. Lookingbill and E.S. Minor



201

Q2  Define the concept of an umbrella species as it is applied to conservation (you 
may need to look this term up in an ecology text if you not familiar with it).
 (a) What can you say about the ability to generalize about connectivity from 

one species to another based on the results from this exercise?
 (b) Given what you have observed about the habitat connectivity and total 

amount of habitat area for these two species on the sample landscape, what 
specific conservation actions would you recommend for the small mam-
mal? for the large mammal?

Q3  A developer would like to remove some of the habitat to create a subdivision on 
a parcel of property, four cells in area, somewhere on the landscape.
 (a) Where would be the most detrimental place(s) to locate this subdivision 

(circle on Figure 12.2)? Would this location be the same for the two spe-
cies? Provide a rationale for your choice(s).

 (b) To offset development elsewhere, the developer is required by law to create 
four cells of new habitat somewhere on the landscape. What would be the 
best strategy for adding this habitat to the existing map (ignore the loss of 
habitat described in the previous question)? Options may include adding 
property to existing patches, creating new patches, random placement of 
new habitat, etc. You should consider multiple strategies and the potential 
impacts to each of the two species, but ultimately a total of only four new 
habitat cells will be created. Draw the four cells on Figure 12.2 and provide 
a rationale for your choice.

 Part 2. Consequences of Connectivity

EXERCISE 2: Analyzing Landscape- and Patch-Level Connectivity

In this exercise, you will examine the consequences of landscape connectivity 
among protected lands in the Willamette Valley ecoregion of the United States from 
the perspectives of a regional planner, wildlife biologist, and pathologist. A map of 
the ecoregion derived from the Conservation Biology Institute (CBI) GIS-based 
Protected Areas Database is provided (Figure 12.3).

Only sites with a land stewardship status 1 or 2 in the USGS GAP analysis pro-
gram will be considered strictly “protected” in your analysis (Scott et al. 2001), thus 
ensuring the highest level of biodiversity protection. Any adjacent protected areas 
with differing ownership, but sharing a boundary, were merged into a single unit 
(i.e., patch or node) for subsequent network analysis.

The potential connectivity of three different species has been analyzed for this 
map of protected areas (Figure 12.4). Each species has different minimum area 
requirements and movement abilities which are related as per Bowman (2003). 
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Tables of landscape- (Table 12.3) and patch-level (Table 12.4) connectivity metrics 
have been provided for each of the species. You will use this information to answer 
questions about the size and spatial configuration of the protected areas for the three 
species, and how the life history differences among species should influence their 
management.

 1. Examine the three separate representations of potential connectivity based on the 
distribution of protected areas (Figure 12.4). One is for wolves with a home 
range of 1000 ha and a dispersal distance of 100 km; a second is for foxes with a 

Figure 12.3 Overview map of the Willamette Valley ecoregion showing prominent landscape 
features and all protected lands
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Figure 12.4 Landscape networks of potential connectivity for protected areas in the Willamette 
Valley ecoregion calculated for mice (Panel a), foxes (Panel b), and wolves (Panel c) based on the 
parameters provided in Table 12.3. Nodes represent protected lands of sufficient size to provide 
suitable habitat for the species and do not represent actual presence or absence of species
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Table 12.3 Landscape-level connectivity metrics for protected areas in the Willamette Valley 
ecoregion calculated for three species

Home  
range (ha)

Maximum dispersal 
distance (km)

Largest  
component index Link density

Mouse 1 1 0.35 0.02
Fox 100 10 0.45 0.07
Wolf 1000 100 1.0 0.67

Table 12.4 Patch-level connectivity metrics for protected areas in the Willamette Valley ecoregion 
calculated for three species

Node
Size 
(ha)

Mouse Fox Wolf

Degree 
(links)

Domain 
(nodes)

Degree 
(links)

Domain 
(nodes)

Degree 
(links)

Domain 
(nodes)

1 4499 2 9 4 6 1 2

4 222 2 9 2 6
5 783 9 9 2 6
13 101 0 0 0 0
15 166 0 0 3 6
17 404 0 0 3 6
20 249 2 4 3 6
23 752 0 0 0 0
26 206 0 0 2 2
30 127 2 2 2 2
39 146 1 1 2 2
41 231 0 0 2 2
44 238 1 1 1 6
46 867 1 1 2 2
48 133 1 1 2 2
53 358 0 0 0 0
54 184 1 1 1 1
55 539 1 1 1 1
56 959 0 0 0 0
58 1108 0 0 0 0 2 2
63 2172
66 133
75 132
Mean 1.2 2.0 1.5 2.5 1.3 2.0

For simplicity of presentation, values are provided for only a subset of the 76 nodes contained 
within the mouse-based network; mean values have been calculated over all nodes. Blanks have 
been left in the table for the values for the last three nodes and should be filled in as part of Exercise 
2. NOTE: Mean values are provided as the average number of links per node and average number 
of nodes reachable per node
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home range of 100 ha and a dispersal distance of 10 km; and the third is for mice 
with a home range of 1 ha and a dispersal distance of 1 km.

 2. Examine the tables of connectivity metrics for each of the three networks 
(Tables 12.3 and 12.4). In particular, note that Table 12.4 provides information 
for individual patches. These values have been calculated using Pajek (De Nooy 
et al. 2005) a freely available Windows-based program for analyzing large net-
works (http://pajek.imfm.si/).

 3. Fill out the missing values in the three bottom rows of Table 12.4. Use the infor-
mation from the maps and tables to answer the questions below.

Q4  Compare the overall landscape-level connectivity for the three different species 
(i.e., largest component index and link density).
 (a) Which species would have the highest connectivity assuming it relied 

solely on protected lands? Which species is potentially least connected?
 (b) How do these results compare to your expectations from Exercise 1? Do 

you see similar or dissimilar patterns?

Q5  Compare the mean patch-level connectivity metrics for the three species (i.e., 
degree centrality and domain).
 (a) Which species seems to be best connected by these measures? Which spe-

cies is potentially least connected?
 (b) How does this compare with your assessment from Question 4? Which spe-

cies would you expect to experience the most problems due to isolation in 
the ecoregion according to these results?

Q6  Imagine you were asked to prioritize regional spending for habitat improve-
ment on protected lands. Consider the relative importance of a specific patch 
(patch 1) to connectivity.
 (a) Is the patch equally important to the overall, broad-scale connectivity of the 

landscape for all three species relative to other protected areas in the ecore-
gion? Are other patches more important?

 (b) Is the patch equally important to local dispersal movement for all three spe-
cies relative to other protected areas in the ecoregion?

Q7  Imagine you were a wildlife biologist tasked with establishing a reintroduction 
program for an endangered species of fox. Which patch would be the most logi-
cal location to transplant new individuals to maximize rapid dispersal of the 
species to other nearby patches? Include in your justification a statement about 
which metric is most important for this type of decision.

Q8  Consider a mouse-borne pathogen that threatens humans and has begun to 
invade the ecoregion. Which patches would be logical locations to focus eradi-
cation efforts to try to control the spread of this disease? Include in your justifi-
cation a statement about which metric is most important for this type of 
decision.

12 Assessing Multi-Scale Landscape Connectivity Using Network Analysis
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 SYNTHESIS

Q9   For learning purposes, several simplifying assumptions were made in this 
exercise. For example, what implicit assumptions were made about the matrix 
when constructing these networks? What types of land covers and landscape 
features might violate these assumptions?

Q10  Patch 1 in Exercise 2 represents the Sauvie Island Wildlife Area. What are two 
specific challenges that might reduce the actual connectivity of this patch to 
the rest of the protected areas in the Willamette Valley?

Q11  Consider a landscape with a highly connected network of wetland patches.
 (a) Imagine a four-lane highway planned to cross the landscape and intersect 

the network. What species groups are likely to be most negatively affected 
by the road? Why? Do not restrict your answer only to mammals.

 (b) Now imagine that instead of a road, portions of the upland landscape were 
proposed to be logged. What effects might this disturbance have on the land-
scape network? What types of species would likely be most affected? Why?

 (c) What strategies might be implemented to try to reduce the negative impacts 
of the road and/or the logging?

Q12  Methods from network analysis can also be used to evaluate connectivity of 
riverscapes or seascapes (e.g., Grant et al. 2007; Treml et al. 2008; Almany 
et al. 2009; Grober-Dunsmore et al. 2009).
 (a) What types of additional considerations might be required in conducting a 

network analysis of freshwater mussel populations within a stream network?
 (b) What additional factors should be considered in quantifying connectivity 

for marine environments?
 (c) Consider a scenario in which multiple sites are being assessed for potential 

inclusion into an existing marine protected-area (MPA) network. How 
might an emphasis on connectivity in deciding among the different sites 
be at odds with other network objectives?

 CONCLUSIONS

The ability to move among habitat patches is vital to ecosystem processes ranging 
from biological invasions to fire spread and climate adaption. Network analysis 
provides useful quantitative measures of potential connectivity. However, these 
measures are scale (and species) specific; thus, more research is needed to develop 
coherent strategies for the design of multi-species management plans. The develop-
ment of new methods for quantifying the effect of the matrix on connectivity is 
another active and important research direction. In many cases, management actions 
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taken within the matrix may be the most effective approach to promoting connectiv-
ity. With these advances in the science and theory of connectivity, network analysis 
will continue to provide a robust set of tools to be applied to conservation chal-
lenges across terrestrial, aquatic, and marine environments.

REFERENCES AND RECOMMENDED READINGS1

Almany GR, Connolly SR, Heath DD et al (2009) Connectivity, biodiversity conservation and the 
design of marine reserve networks for coral reefs. Coral Reefs 28:339–351

Angelone S, Holderegger R (2009) Population genetics suggests effectiveness of habitat connec-
tivity measures for the European tree frog in Switzerland. J Appl Ecol 46:879–887

Bodin O, Norberg J (2007) A network approach for analyzing spatially structured populations in 
fragmented landscape. Landsc Ecol 22:31–44

Bowman J (2003) Is dispersal distance of birds proportional to territory size? Can J Zool 81:195
*Calabrese JM, Fagan WF (2004) A comparison-shopper’s guide to connectivity metrics. Front 

Ecol Environ 2:529–536. Very readable discussion of the different approaches available to 
ecologists for quantifying connectivity

CBI (2012) The Conservation Biology Institute. October 2012. PAD-US (CBI Edition) Version 2. 
Corvallis, Oregon

Clergeau P, Burel F (1997) The role of spatio-temporal patch connectivity at the landscape level: 
an example in a bird distribution. Landsc Urban Plan 38:37

*Crooks KR, Sanjayan M (2006) Connectivity conservation. Cambridge University Press, 
Cambridge. The interested reader would enjoy many of the articles in this book

De Nooy W, Mrvar A, Batagelj V (2005) Exploratory social network analysis with Pajek. 
Cambridge University Press, Cambridge

Dixo M, Metzger JP, Morgante JS et al (2009) Habitat fragmentation reduces genetic diversity and 
connectivity among toad populations in the Brazilian Atlantic Coastal Forest. Biol Conserv 
142:1560–1569

Estrada-Pena A (2005) Effects of habitat suitability and landscape patterns on tick (Acarina) meta-
population processes. Landsc Ecol 20:529–541

Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 
34:487–515

Fahrig L, Merriam G (1985) Habitat patch connectivity and population survival. Ecology 
66:1762–1768

Ferrari JR, Lookingbill TR, Neel M (2007) Two measures of landscape-graph connectivity: assess-
ment across gradients in area and configuration. Landsc Ecol 22:1315–1323

Ferreras P (2001) Landscape structure and asymmetrical inter-patch connectivity in a metapopula-
tion of the endangered Iberian lynx. Biol Conserv 100:125–136

Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. 
Glob Ecol Biogeogr 16:265–280

Flather CH, Bevers M (2002) Patchy reaction-diffusion and population abundance: The relative 
importance of habitat amount and arrangement. Am Nat 159:40–56

*Galpern P, Manseau M, Fall A (2011) Patch-based graphs of landscape connectivity: a guide to 
construction, analysis and application for conservation. Biol Conserv 144:44–55. A catalog of 
the different ways patch-based networks can be built and analyzed for different conservation 
purposes

1 NOTE: An asterisk preceding the entry indicates that it is a suggested reading.

12 Assessing Multi-Scale Landscape Connectivity Using Network Analysis



208

*Grant EHC, Lowe WH, Fagan WF (2007) Living in the branches: population dynamics and eco-
logical processes in dendritic networks. Ecol Lett 10:165–175. Excellent summary of theory 
and empirical studies relating to ecological dynamics in streams and other dendritic 
networks

*Grober-Dunsmore R, Pittman SJ, Caldow C et al (2009) A landscape ecology approach for the 
study of ecological connectivity across tropical marine seascapes. In: Nagelkergen I (ed) 
Ecological connectivity among tropical coastal ecosystems. Springer, New York, pp 493–530. 
The reader with marine interests would enjoy the collection of articles compiled in this book

Hanski I, Gilpin M (1991) Metapopulation dynamics—brief-history and conceptual domain. Biol 
J Linn Soc 42:3–16

Harary F (1969) Graph theory. Addison-Wesley, Massachusetts
Jordan F, Baldi A, Orci KM et al (2003) Characterizing the importance of habitat patches and cor-

ridors in maintaining the landscape connectivity of a Pholidoptera transsylvanica (Orthoptera) 
metapopulation. Landsc Ecol 18:83–92

Kadoya T (2009) Assessing functional connectivity using empirical data. Popul Ecol 51:5–15
Kindlmann P, Burel F (2008) Connectivity measures: a review. Landsc Ecol 23:879–890
King AW, With KA (2002) Dispersal success on spatially structured landscapes: when do spatial 

pattern and dispersal behavior really matter? Ecol Model 147:23–39
Lookingbill TR, Gardner RH, Ferrari JR et al (2010) Combining a dispersal model with network 

theory to assess habitat connectivity. Ecol Appl 22:427–441
Lyford ME, Jackson ST, Betancourt JL et al (2003) Influence of landscape structure and climate 

variability on a late Holocene plant migration. Ecol Monogr 73:567–583
*Minor ES, Lookingbill TR (2010) A multiscale network analysis of protected-area connectivity 

for mammals in the United States. Conserv Biol 24:1549–1558. Assessment of potential con-
nectivity among protected area networks for three large biomes of the United States. Strategies 
for prioritizing lands for conservation using network analysis are discussed

Minor ES, Urban DL (2007) Graph theory as a proxy for spatially explicit population models in 
conservation planning. Ecol Appl 17:1771–1782

Morzillo AT, Ferrari JR, Liu JG (2011) An integration of habitat evaluation, individual based mod-
eling, and graph theory for a potential black bear population recovery in southeastern Texas, 
USA. Landsc Ecol 26:69–81

Opdam P, Wascher D (2004) Climate change meets habitat fragmentation: linking landscape and 
biogeographical scale levels in research and conservation. Biol Conserv 117:285–297

Pascual-Hortal L, Saura S (2006) Comparison and development of new graph-based landscape 
connectivity indices: towards the priorization of habitat patches and corridors for conservation. 
Landsc Ecol 21:959–967

Pe'er G, Kramer-Schadt S (2008) Incorporating the perceptual range of animals into connectivity 
models. Ecol Model 213:73–85

Richardson DM, Whittaker RJ (2010) Conservation biogeography—foundations, concepts and 
challenges. Divers Distrib 16:313–320

Royer L, Reimann M, Andreopoulos B et al (2008) Unraveling protein networks with power graph 
analysis. PLoS Comput Biol 4(7), e1000108

Saura S, Pascual-Hortal L (2007) A new habitat availability index to integrate connectivity in 
landscape conservation planning: comparison with existing indices and application to a case 
study. Landsc Urban Plan 83:91–103

Scott JM, Davis FW, McGhie RG et al (2001) Nature reserves: do they capture the full range of 
America’s biological diversity? Ecol Appl 11:999–1007

Taylor PD, Fahrig L, Henein K et al (1993) Connectivity is a vital element of landscape structure. 
Oikos 68:571–573

Tischendorf L, Fahrig L (2000) On the usage and measurement of landscape connectivity. Oikos 
90:7–19

Treml EA, Halpin PN, Urban DL et al (2008) Modeling population connectivity by ocean currents, 
a graph-theoretic approach for marine conservation. Landsc Ecol 23:19–36

T.R. Lookingbill and E.S. Minor



209

Urban DL, Keitt T (2001) Landscape connectivity: a graph-theoretic perspective. Ecology 
82:1205–1218

*Urban DL, Minor ES, Treml EA (2009) Graph models of habitat mosaics. Ecol Lett 12:260–273. 
A review of recent applications of graph theory to landscape ecology

van Dorp D, Opdam PFM (1987) Effects of patch size, isolation and regional abundance on forest 
bird communities. Landsc Ecol 1:59–73

West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws 
in biology. Science 276:122–126

12 Assessing Multi-Scale Landscape Connectivity Using Network Analysis



211© Springer-Verlag New York 2017 
S.E. Gergel, M.G. Turner (eds.), Learning Landscape Ecology, 
DOI 10.1007/978-1-4939-6374-4_13

Chapter 13
Systematic Conservation Planning 
with Marxan

Matthew E. Watts, Romola R. Stewart, Tara G. Martin, Carissa J. Klein, 
Josie Carwardine, and Hugh P. Possingham

OBJECTIVES

Conservation planning is the science of choosing which actions to take where for 
the purpose of conserving biodiversity. Creating a system of protected areas is the 
most common form of systematic conservation planning. Hence, we will focus on 
the process of protected area selection in this chapter. Marxan is the most widely 
used software in the world for creating marine and terrestrial protected area sys-
tems. Because conservation planning is an important job skill for conservation and 
resource managers, you should understand the principles involved even if you don’t 
use this software in your job and even if you use software other than Marxan for 
systematic conservation planning. From this chapter, we would like you to:

 1. Gain an understanding of the principles of conservation planning: representa-
tion, complementarity, adequacy, efficiency, and spatial compactness;

 2. See and understand how these principles can be applied to a practical example; 
and

 3. Gain familiarity with Marxan software (via the Zonae Cogito interface).

In Exercise 1, you will explore a simple reserve design problem using a spread-
sheet exercise (Exercise1.xls) to implement the basic principles of reserve design in 
a simple hypothetical landscape. In Exercise 2, you will use Marxan to design sys-
tems of protected areas in Tasmania. You will run Marxan through Zonae Cogito, a 
decision support system through which Marxan can be run in an interactive and 
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user-friendly way. Software installation for Exercise 2 requires following detailed 
instructions provided here: http://www.uq.edu.au/marxan/docs/Installing%20
Zonae%20Cogito%20on%20your%20computer.pdf and will likely require admin-
istrator privileges on your machine to install and operate properly. All the data files 
needed to complete the exercises can be found on the book website, along with 
some options for additional advanced exercises.

 INTRODUCTION

 Part 1. Systematic Conservation Planning

World-class conservation planning processes for land and sea use an approach 
known as systematic conservation planning (Moilanen et al. 2009; Possingham 
et al. 2006). Systematic conservation planning focuses on locating, designing, and 
managing conservation areas that collectively represent the biodiversity of a region 
for the least cost. In many cases, new protected areas are selected to add to an exist-
ing set of protected areas. The systematic conservation planning approach is trans-
parent, and the system of protected areas function together to meet clearly defined 
conservation goals.

Systematic conservation planning is a departure from ad hoc and opportunistic 
approaches used in the past. An ad hoc approach is one in which site selection is 
driven by conservation urgency, affinity, scenery, and ease of designation, often 
avoiding areas that are politically or economically costly. Most national parks or 
other places considered to be areas for “conservation” were not chosen to meet 
specific biodiversity objectives (Possingham et al. 2000). Many existing protected 
areas were selected because of their amenity value, for example, as a vacation spot. 
Most are located in places unsuitable for other purposes such as agriculture or urban 
development (Pressey et al. 1993). Other areas have been selected to protect a few 
charismatic flagship or umbrella species (Simberloff 1998) without any guarantee 
that they will adequately conserve the biodiversity of a region. This ad hoc approach 
has resulted in a legacy of fragmented collections of sites in which some habitats or 
ecosystems, like the “rock and ice” of high mountain areas, are overrepresented, 
while low-lying fertile plains are underrepresented (Pressey et al. 1993; Soulè and 
Terborgh 1999).

Systematic conservation planning is a more rigorous and accountable approach 
for selecting priority areas for protection compared to the opportunistic approach 
(Groves et al. 2002; Margules and Pressey 2000). Over the past 25 years, a system-
atic approach to conserving biodiversity has evolved (Moilanen et al. 2009; Pressey 
and Bottrill 2009) and now includes 11 well-defined stages (Table 13.1). Marxan 
was designed primarily to help inform stage 9, the selection of new conservation 
areas to complement existing ones in order to achieve the conservation objectives. 
Specifically, Marxan identifies potential priority areas for inclusion in a protected 
area network and provides other information to assist decision-makers in choosing 
the final selection of areas.
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 Fundamental Principles for Designing Conservation Areas

Here, we discuss five fundamental principles used when designing conservation 
areas: representation, complementarity, adequacy, efficiency, and spatial compact-
ness (Margules and Pressey 2000; Possingham et al. 2006). Marxan can accommo-
date all of these principles.

Representation. Protected area systems should contain the full range of biodiver-
sity, taking into consideration biodiversity composition, structure and function, and 
evolutionary processes. Incorporating as many kinds of biodiversity (or conserva-
tion) features as possible (such as species, ecosystems, vegetation types) will result 
in a more comprehensive protected area system. Protected area systems that repre-
sent all facets of biodiversity have high representativeness. For example, if you wish 
to protect populations of a particular species or samples of a habitat, it is best if the 
areas chosen cover the range of variation in that species and/or habitat. Wherever 
possible, the selection of areas should take into consideration any species/habitats 
that are rare, endangered, or considered unique.

Complementarity. Protected areas for conservation should be selected as a com-
plementary set, where each one complements features of others. Sites with the high-
est species richness are not necessarily the most important for inclusion in a 
protected area system, because the most species rich sites may contain similar 
assemblages. Sites complement each other well if they contain different features of 
biodiversity. Consequently, their selection provides a combination of sites that 
achieve the goal of comprehensiveness in the most efficient way. The principle of 
complementarity means that planning is best informed by knowing what is already 
contained within existing conservation areas—an exercise referred to as gap analy-
sis. The selection proceeds by iteratively reviewing how well the targets (e.g., 20% 
of total habitat for each species) are achieved when individual sites are added to (or 
removed from) the protected area system.

Table 13.1 Phases of a 
framework for systematic 
conservation planning 
(Margules and Pressey 2000; 
Pressey and Bottrill 2009). 
Phase 9 is the main focus  
of this chapter.

1 Scoping and costing the planning process

2 Identifying and involving stakeholders

3 Describing the context for conservation areas

4 Identifying conservation goals

5 Collecting data on socioeconomic variables 
and threats

6 Collecting data on biodiversity and other 
natural features

7 Setting conservation objectives

8 Reviewing current achievements of objectives

9 Selecting additional conservation areas
10 Applying conservation actions to selected areas

11 Maintaining and monitoring conservation areas

13 Systematic Conservation Planning with Marxan
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Adequacy. The goal of protected area system design is not to merely capture biodi-
versity, but to promote its persistence and long-term viability. Larger and more con-
nected systems of conservation areas are considered to be superior to smaller and 
more isolated conservation areas. Larger connected systems can provide for the 
maintenance of ecosystems through connectivity and offset the effects of local 
catastrophes. A system-based approach to protected area system design—where the 
whole is more than the sum of its parts—recognizes the relationship between indi-
vidual conservation areas, and therefore the role of each area as part of a system.

Ideally, a protected area system is designed to conserve enough of each feature 
of biodiversity to enable persistence. However, the minimum habitat area or popula-
tion size required for the persistence of a species or ecosystem is rarely known, and 
often limited budgets mean that we cannot simply conserve more to be on the safe 
side. One general strategy proposed to address the issue of persistence in the absence 
of this knowledge is redundancy, making sure that you don’t have all of one fea-
ture in one place. Replication improves the likelihood of regional persistence, 
spreading the risk of failure by providing greater opportunity for recolonization of 
empty protected areas from other viable and connected areas.

Efficiency. Efficiency describes the ability of a protected area system design pro-
cess to deliver biodiversity objectives for least cost or fewest resources. Because 
resources available to achieve conservation goals are finite, inefficient systems are 
less likely to achieve their goals. By planning protected area systems efficiently, we 
minimize the risk of exhausting available resources before biodiversity objectives 
are met (Ban and Klein 2009; Carwardine et al. 2008; Klein et al. 2008; Stewart and 
Possingham 2005). We describe the limiting resources or limiting factors as “costs.” 
The typical costs of a conservation area include:

• Area available to reserve
• Costs of ongoing management
• Costs to industry, tourism, and recreation from displaced activities
• Acquisition or land purchase costs

Marxan provides efficient solutions by incorporating these costs into the design 
process. A protected area system design process that ignores costs is not as practi-
cally useful as one that considers cost. Lastly, decisions about individual protected 
areas affect the performance of the protected area system as a whole. Efficiency is 
therefore also concerned with the way sites are prioritized for conservation. The 
most efficient solutions are obtained by selecting sites as a complementary set, 
rather than selecting sites one by one.

Spatial compactness. A compact protected area system, with a low edge:area ratio 
has three advantages over a fragmented system. First, biodiversity within a com-
pact system is more connected, giving a greater chance of persistence compared 
with a fragmented system. Second, many of the most sensitive species are absent 
or have low population growth rates within edges. Finally, edges between a park 
and other areas cost money: a longer edge means more neighbors and more man-
agement costs.
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Before we explore a real-world example and learn about the kind of software 
used by professionals, we will explore a small spreadsheet example that explores 
these themes.

 EXERCISES

EXERCISE 1: Small-Scale Protected Area System Design

In this exercise, you will use the spreadsheet and provided handout to design pro-
tected area systems that reach conservation objectives in a cost-effective manner. 
Here, our objective will be to represent 20% of the total habitat area for each of 
three species in the study region. An additional objective will be to design protected 
areas with different degrees of spatial compactness. In this exercise, we consider a 
hypothetical landscape made up of a grid of 100 sites—referred to as planning 
units—arranged in a 10 × 10 grid:

 1. Download and unzip the folder called Exercise1.
 2. Within this folder, open the file Exercise1.xls. You will use the first sheet within 

the spreadsheet whose tab is labeled 3 features.
 3. Notice that this spreadsheet contains information on each planning unit. There 

are 100 total planning units, each in a separate row with a unique Planning Unit 
Identification Number [PUID].

 4. Notice the additional columns in the spreadsheet that include the cost of each plan-
ning unit, as well as the area of each species contained in a given planning unit.

 5. Notice the second column highlighted yellow, labeled [SELECTIONS]. In the 
spreadsheet, you can easily select a planning unit for inclusion in the protected 
area network by changing the value in the [SELECTIONS] field from 0 
(unselected) to 1 (selected).

 6. Also of use is the file Exercise1_handout.pdf within the same folder. You can 
use this handout to visualize the spatial configuration of your protected area 
system. It contains information about the cost of each planning unit and the area 
of each species in each planning unit.

 7. Notice when you select a planning unit, summary information [green cells] is 
automatically updated for your protected area system, including the cost of the 
protected area system selected [SUM COST] as well as the amount needed to 
meet the targets for the protected area system [TARGET GAP].

 8. You can also track the individual species targets [red cells] as you select vari-
ous planning units and then determine if your target is met. Remember, our 
target is 20% of the total habitat area for each of these three species.

 9. To answer the questions below, you will use this spreadsheet to find a protected 
area system that meets all of your conservation targets in a cost- effective way. 
When you have found a protected area system that meets your conservation 
goals, record the value of [SUM COST], the cost of your protected area 
system.

13 Systematic Conservation Planning with Marxan
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 10. If you wish, you could also devise a simple heuristic to prioritize sites. For 
example, at each site, you might compute the sum of feature areas and divide 
by the site cost as a measure of the cost-effectiveness of a single site.

Q1  Without considering spatial compactness, what is the lowest cost of a protected 
area system you can design that meets the desired habitat protection objectives? 
Record the cost. Save the “map” of your protected area system (either using 
Excel or by coloring your handout).

Q2  What is the additional cost of a protected area system that meets the habitat 
protection objectives but with a low, medium, or high degree of spatial com-
pactness? As you answer this question, consider the following:
• Remember that how you determine the level of compactness can be a sub-

jective choice.
• Create a graph where the cost of the protected area system is the X-axis, and 

the boundary length (edge or compactness) is the Y-axis. Good protected 
area systems will be in the left-hand bottom corner of your plot.

• If you are working as a group, each person can create a single system but 
then include all of your systems together on one plot.

 Part 2. Using Marxan for Conservation Planning

 What Is Marxan?

Marxan is software that delivers decision support for systematic conservation protected 
area design (Ball et al. 2009). It was initially designed to solve a conservation problem 
known as the minimum-set problem, where the goal is to achieve a certain amount of 
every biodiversity feature for the smallest possible cost (McDonnell et al. 2002). Or put 
another way, the objective is to minimize costs subject to the constraint of meeting 
biodiversity targets (Possingham et al. 2000; Ball and Possingham 2000). An example 
biodiversity target might be to ensure at least 30% of every habitat is represented in a 
protected area network. A planner is likely to want to minimize the total monetary cost 
required to purchase and manage a conservation area that meets this constraint.

The number of possible solutions to this problem is vast and beyond the ability of 
the human mind or a computer to consider. For example, the number of possible solu-
tions to Exercise 1 is 2100 or 1.3 × 1030! For this reason, algorithms have been developed 
to support decisions around the design of conservation areas. Furthermore, not only 
would it would take an extremely long time to find the single optimal solution to any 
given real-world protected area design, but a single solution is unlikely to be the most 
useful. Thus, currently heuristics are preferred over exact algorithms because they 
provide timely solutions to complex problems and offer a range of near-optimal solu-
tions for planners and stakeholders (Possingham et al. 2000; McDonnell et al. 2002).

Marxan can be used for a variety of purposes at different stages in the systematic 
conservation planning process (Table 13.1). The tool was designed primarily to help 
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inform Stage 9: “Selecting additional conservation areas” to complement existing 
ones in order to achieve the conservation goals. The software identifies sets of areas 
that meet conservation targets for minimal “cost,” and it can be used to explore trade-
offs between conservation and socioeconomic objectives. In addition, it can highlight 
sites that occur in a large number of solutions, which can help identify priority areas 
for conservation action. It can also be used to measure the achievement of targets 
within existing conservation areas (Stage 8) (Stewart et al. 2003) and to help priori-
tize conservation actions and develop management plans for selected sites (Stage 11).

 Problem Formulation Using Marxan

Any conservation planning problem can be formulated as an optimization problem 
with the following essential elements (Moilanen et al. 2009; Possingham et al. 
2001; Wilson et al. 2009):
 1. A clearly defined objective stating the desired outcome (e.g., maximize the num-

ber of species conserved or represent 30% of each habitat type);
 2. A list of features to be targeted for conservation (e.g., species, habitats, soil types);
 3. A list of actions (e.g., protect an area) and how these actions contribute to achieving 

the objective (e.g., how many species are conserved if the action is applied); and
 4. Financial information specifying the cost of implementing each action in a site, 

as well as the budget available.
Clearly defining each element helps to identify conservation priorities using the 
software.

Marxan uses two well-accepted approaches to identify spatial conservation pri-
orities, minimum-set and maximal coverage, and each solves a different objective. 
The objective of the minimum-set strategy is to achieve the conservation objec-
tives while minimizing the resources expended. Less commonly, Marxan is used to 
solve the maximal coverage strategy, which is to maximize the biodiversity ben-
efit given a fixed budget (Possingham et al. 2006). Regardless of approach, it is 
essential to clearly define an objective that states the desired outcome before using 
the software to identify priorities (Moilanen et al. 2009; Possingham et al. 2006).

The objective function is the mathematical formulation of the minimum-set 
problem. In protected area design, the problem we are trying to solve is to identify 
the protected area system that achieves our targets and spatial requirements for the 
least cost. Thus, a protected area configuration is given an objective function score 
to measure how well it performs. In comparing alternative solutions, those with 
lower scores are better. Thus, the objective function is a score that we want to mini-
mize and is calculated as follows:

Score = Cost + Boundary Length + Penalty
where costs, boundary length, and penalties are determined as below.

Cost of the protected area system. Each planning unit (parcel of land or sea) is 
assigned a cost that the user defines prior to planning. The cost is summed for all 
planning units included in a protected area system to calculate their combined cost.
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Boundary length of the protected area system. One of the practical consider-
ations for protected area design is the spatial configuration of the protected area 
system (i.e., a single large system or several small systems). The protected area 
system boundary length is measured as the sum of the planning units that share a 
boundary with planning units outside the protected area system. Hence, fragmented 
protected area systems will have a large boundary length. The objective function 
addresses the issue of connectivity by using the boundary length modifier (BLM) 
which places a value on the importance of having a more compact protected area 
system. The BLM is important because a system that is fragmented will likely be 
difficult (and costly) to manage. In addition, there are increased edge effects and 
reduced connectivity in a fragmented solution, potentially leading to reduced biodi-
versity persistence. Thus, some level of “clumping” or spatial compactness is desir-
able for management. The BLM is a user-defined parameter and allows you to 
control the amount of clumping that occurs in the solutions. With a large value for 
BLM, the system will be more clumped.

Penalty incurred for every feature that fails to meet its target. For each alterna-
tive solution, Marxan calculates whether the target for each conservation feature is 
met or not. If a target is unmet, then a user-defined penalty cost called the species 
penalty factor (SPF) is applied. Making the SPF user-defined allows different 
weightings be given to different feature targets. For example, it may be more impor-
tant to achieve targets for feature A than for feature B. Alternatively, the same SPF 
can be applied to all conservation features (in which case, the SPF for feature 
A = SPF for feature B). The higher the SPF, the higher the penalty when a conserva-
tion feature target is unmet. An appropriately high SPF will result in more costly 
protected areas with more targets met.

More formally, the objective function is:

 
Score Cost BLM BoundaryLength SPF formissing fe

PUs Features

= + ´ +å å aatures
 

where PUs are the planning units, BLM is the boundary length modifier, and SPF is 
the species penalty factor.

 Finding Optimal Solutions Using Simulated Annealing

Marxan finds near-optimal solutions to a minimum-set problem by minimizing the 
objective function—a lower score means a better solution to the problem. The num-
ber of possible solutions to this problem is vast, so it is usually impossible to find 
the optimal solution. Instead, a metaheuristic algorithm, simulated annealing, is 
employed to find many near-optimal solutions (Kirkpatrick et al. 1983).

The simulated annealing algorithm uses a technique borrowed from statistical 
mechanics to find good solutions from among this vast number of possible solu-
tions. A large number of random changes to the protected area system are attempted, 
typically one million or more. At the start of the process of annealing, any change 
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in score is accepted. As the process proceeds, the acceptance probability of bad 
changes is progressively reduced, until finally only good changes are accepted. A 
bad change is one that increases the objective function score, while a good change 
is one that reduces the score (Moilanen and Ball 2009). This process allows the 
algorithm to find solutions that are close to an exact solution.

In reality, protected area design problems have many near-optimal solutions, 
none of which are significantly better or worse than the optimal solution. As such, 
it is more useful for decision-making to identify a range of near-optimal solutions 
that provide diverse options for a decision-maker, rather than a single optimal solu-
tion (Kirkpatrick et al. 1983). Happily, this is the way Marxan works, generating a 
range of options, making it useful in the real world. Some heuristic algorithms do 
not explore the solution space well because they get “stuck” at a local minimum 
nowhere near optimal. The simulated annealing algorithm avoids this problem by 
taking random backward steps (or bad moves), making it a useful algorithm for the 
purposes of conservation planning. Simulated annealing is fast, simple, and robust 
to changes in the size and type of problem. These advantages allow it to explore a 
variety of scenarios with differing constraints and parameters while producing 
many good solutions. Users can also access a variety of simpler, but often faster, 
heuristic algorithms within Marxan. More information on simple heuristic algo-
rithms and simulated annealing can be found in the Marxan User Manual Appendix 
B (Game and Grantham 2008) and in the Marxan Good Practices Handbook (Ardron 
et al. 2010).

Lastly, while Marxan can help find efficient solutions to spatial prioritization 
problems, it cannot make decisions. The software is designed to be a decision sup-
port tool. As such, Marxan solutions should be used within a larger decision- making 
process involving stakeholders, managers, local people, etc.

 MARXAN INPUTS

The information Marxan needs to run must be formally organized in input files that 
conform to its information management system. At a minimum, the following files 
are needed to run Marxan:

• Planning unit file
• Conservation feature file (species and habitat list)
• Planning unit versus conservation feature file
• Boundary length file
• Input parameter file

Examine Table 13.2 for more details on the output files from Marxan.
In Exercise 2, you will use species and habitats as conservation features for 

Marxan and use land acquisition cost for the planning unit costs. It is possible to 
use more abstract concepts for Marxan features and costs, and we illustrate some of 
these in the online appendix for this chapter.
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Table 13.2 Description of Marxan Input Files

File name Description How Marxan uses the file

Planning unit 
file (pu.dat)

This file lists all the planning units in 
the planning region. It usually includes 
additional data on each planning unit’s 
individual cost and reserve status. This 
list of planning units corresponds to the 
spatial layer of planning units defined 
in your GIS. The planning unit layer 
may be preexisting cadastral boundaries 
or watersheds, or you may determine 
that a grid, hexagon, or other shape of 
planning units is more appropriate for 
your planning exercise. There are tools 
that can help you create the planning 
unit layer.

• Identify each planning unit

• Identify if planning unit is 
already conserved

• Calculate how much the 
protected area system costs 
when planning units are 
included

Conservation 
feature file 
(spec.dat)

This file contains information about 
each of the conservation features being 
considered, such as their name, 
conservation targets, and representation 
requirements. The penalty that is 
applied, if the representation 
requirements for each feature are not 
met (or SPF), is also in this file.

• Identify each conservation 
feature

• Determine how much of each 
conservation feature must be 
included in a given solution to 
meet targets

• Calculate the penalty for 
conservation features not 
meeting targets

Planning unit 
versus 
conservation 
feature file 
(puvssp.dat)

This file contains information on the 
distribution of conservation features 
across the planning units.

• Find planning units that 
contain conservation features

• Calculate the amount of a 
given conservation feature in 
a planning unit

• Allow Marxan to calculate the 
contribution a planning unit 
makes toward reaching the 
conservation feature targets

Boundary 
length file 
(bound.dat)

This file contains information about the 
spatial relationship between planning 
units (e.g., the length of shared 
boundaries between planning units) and 
some other measures of the desirability 
or cost including adjacent planning 
units in a solution. This file is necessary 
if you wish to use the boundary length 
modifier to adjust the compactness of 
the solutions.

• Calculate the boundary length 
of each solution by adding up 
all of the boundary values on 
the edges of the solution

Input 
parameter file 
(input.dat)

This file defines many of the parameters 
that control the way that Marxan works, 
such as the number of solutions to 
generate and the BLM. It is also used to 
tell Marxan where to find the input files 
containing your data and where to place 
the output files.

• Set input parameters

• Locate the input and output 
files

Detailed information about inputs can be found in the Marxan User Manual (Game and Grantham 
2008) and Marxan Good Practices Handbook (Ardron et al. 2010). Tools to create the files are 
available on the Marxan website (www.uq.edu.au/marxan) along with detailed tutorials. It is also 
possible to create input files using a GIS and spreadsheet application.

http://www.uq.edu.au/marxan
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 MARXAN OUTPUTS

The most commonly used output includes:
• Solution for each run
• Summed solution
• Missing value information
• Summary information

Review Table 13.3 for more details on Marxan output files.

Table 13.3 Description of Marxan output files

File name Description How Marxan uses the file

Solution for 
each run 
(scenario_
r001.dat)

This is a text file that lists the planning units 
and identifies if they were selected for inclusion 
in the protected area system. A planning unit 
may be selected because it contains 
conservation features that are irreplaceable, and 
also because its cost or location efficiently 
improves spatial compactness.

• Display a protected area 
system in a GIS

• Compare protected area 
systems spatially

• Maps can be used as 
part of a stakeholder 
involvement plan

Summed 
solution 
(scenario_
ssoln.dat)

This file shows the number of times each 
planning unit is selected across all the protected 
area systems. Planning units which are never 
selected have a selection frequency of 0, while 
those always selected have a selection 
frequency equal to the total number of runs. 
This file gives an indication of the relative 
importance of a planning unit for efficient 
protected area system design. It is often used to 
indicate the relative priority of planning units.

• GIS display of how 
frequently planning 
units are selected

• It should not be used on 
its own to create 
protected area systems, 
but it can be informative 
to identify key areas

• These maps are also 
used as part of a 
stakeholder involvement 
process

Missing 
value 
information 
(scenario_
mv001.dat)

This file provides detailed information about 
how well each solution meets the conservation 
feature targets, providing information such as 
the target amount of the feature required in the 
protected area system, how much of the feature 
was conserved, and whether the target was met.

• Find out which feature 
targets are not met in 
each solution and by 
how much

• Helps set the species 
penalty factor (SPF) 
parameter

Summary 
information 
(scenario_
sum.dat)

This file shows information about each run 
including the objective function score, cost, 
number of planning units selected, boundary 
length, species penalty, shortfall (cumulative 
target gap for all features), and number of 
features not meeting their targets.

• Compare the 
performance of 
solutions in terms of 
targets met, score, cost, 
etc.

Detailed information about each of the output file types is available in Section 5.3 of the Marxan 
User Manual (Game and Grantham 2008), and the Marxan Good Practices Handbook (Ardron 
et al. 2010) contains information about how these output files are used.
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 Instructions for Zonae Cogito: Marxan Graphical User Interface

Zonae Cogito (ZC) is a decision support system through which Marxan can be run 
in an interactive and user-friendly way. It allows users to edit and calibrate the key 
input files including the planning unit file, species file (SPF), boundary length modi-
fier (BLM), as well as change parameters such as the number of runs (NUMREPS) 
and number of iterations (NUMITNS). It uses an open source GIS to display Marxan 
solutions interactively, allowing seamless interaction with Marxan inputs and out-
puts. ZC has two windows: a Marxan window where parameters and input files can 
be edited and a GIS window where spatial outputs can be viewed.

In the GIS window of ZC, you can spatially view Marxan outputs. The list of items 
in the Output to Map control shows all the spatial outputs you can view:

• Selection frequency reserved zone corresponds to the summed solution output 
file.

• Best solution, solution 1, etc. correspond to the solution for each run output 
files for each reserve system and the best reserve system (the one with the 
lowest objective function score).

In the Marxan drop-down menu of ZC, you can use the View Output control to 
view the nonspatial output tables:

• Summary corresponds to the summary information output file.
• Missing values bar graph corresponds to the missing value information out-

put file for each protected area system.
• Best solution corresponds to the missing value information output file for just 

the best protected area system (the one with the lowest objective function score).

ZC allows easy calibration of Marxan parameters. Calibration is the process of 
choosing parameters, so the software properly represents the real-world situation 
being analyzed. Calibration helps ensure that the protected area systems produced 
are close to optimal while still achieving the conservation feature targets and desired 
degree of clumping. If you do not calibrate the key Marxan parameters, you risk 
ending up with:

• Inefficient sets of solutions
• Inappropriate degree of clumping
• Inefficient running time for your analysis
• Unmet feature targets

Further reading on calibration is available in Fischer and Church (2005) and the 
Marxan Good Practices Handbook, Chapter 8 (Ardron et al. 2010).

A sensitivity analysis allows you to determine which input data and parameters 
most influence the solution. This can be important if, for example, there is a data 
layer with a great deal of uncertainty driving the results. In this case, you may want 
to remove the data layer from the analysis or use another data layer to represent the 
conservation feature. More information about sensitivity analysis can be found in 
Section 8.4 of the Marxan Good Practices Handbook (Ardron et al. 2010).
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 Additional Information

Additional documentation with detailed information is available on the Marxan 
website: (http://www.uq.edu.au/marxan/documentation). Also see the online 
Appendix for this chapter. Segan et al. 2011 provides more background on Zonae 
Cogito. Also see the user manual “Using the Zonae Cogito Decision Support 
System” for more technical information (Watts et al. 2010).

EXERCISE 2: Real-World Protected Area Design

Using the Zonae Cogito and Marxan software packages, you will generate and 
explore alternative protected area systems for Tasmania, an island state south of 
Australia. The provided Marxan data (Exercise2.zip) include existing protected 
areas, cost data (land acquisition costs), and biodiversity features (vegetation types 
and a single bird species) (Figure 13.1). For our purposes, the objective will be to 
represent 20% of the total area for each vegetation type and species in the region.

NOTE: Be sure your instructor has fully installed the required ZC software before 
proceeding, following the detailed instructions provided at http://www.uq.edu.au/
marxan/docs/Installing%20Zonae%20Cogito%20on%20your%20computer.pdf. 

You must have full write permissions (administrator privileges) in order to run the 
software:
 1. Unzip the file Exercise2.zip to your computer into a folder where you have full 

write permissions.
 2. Launch the Zonae Cogito software.
 3. From the folder where you have unzipped your files, load the project Exercise2.zcp 

with Zonae Cogito.

Figure 13.1 Example maps of Marxan input for Tasmania. Panel A represents the 63 vegetation 
types used. Panel B shows the cost surface used where darker areas are more expensive
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 4. In the Marxan window within the Zonae Cogito graphical user interface, navi-
gate to the Marxan Parameter To Edit list, and locate key parameters:
• The NUMREPS and BLM parameters are accessible directly from this drop-

down menu.
• The SPF value for each feature can be found with the SPEC parameters.

 5. Leave the NUMITNS parameter set to one million throughout the exercise. It is 
only necessary to increase this parameter for working with broader scale datasets 
than the one being used for this exercise.

 6. Set the NUMREPS parameter to 10 for sensitivity analysis, and set it to 100 for 
generating your final results. This means you will generate only 10 reserve sys-
tems for the parameter setting phase, and you will generate 100 reserve systems 
once your parameters for final results.

 7. Press the Run button on the Marxan window to compute a set of reserve sys-
tems based on your input files and parameters.

Q3  The targets are set at 20% of the current habitat. Try increasing the targets to 
40% and then decreasing them to 10%. What effect does this have on the size 
and the cost of the protected area system?

Q4  Revisit the earlier definition and utility of the SPF value (species penalty fac-
tor). What is an appropriate SPF value to use for each biodiversity feature that 
ensures a reserve system will capture the targets for each? For this question, 
generate reserve systems ignoring spatial compactness (i.e., use a BLM of 
zero). What is the cost of one of your representative efficient reserve systems?

Q5  Consider designing different reserve systems that meet your objectives but have 
low, medium, and high degrees of spatial compactness. What are appropriate 
boundary length modifiers (BLM) values to use? Adjust the BLM, and monitor 
how the spatial compactness changes. As you did in Q2, plot boundary length 
as a function of reserve system cost for low, medium, and high degrees of spa-
tial compactness.

 SYNTHESIS

EXERCISE 3: Stakeholder Report Based on Marxan Output

Using your results from Exercise 2, prepare a report to stakeholders in a hypotheti-
cal decision-making process that illustrates several distinct options for reserve sys-
tem design in Tasmania. The target audience should include:

• Government agencies concerned with conservation and resource use
• Commercial organizations concerned with resource use
• Commercial ecotourism operators concerned with exploiting the natural fea-

tures of the study region for tourism
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• Nongovernment organizations concerned with protecting biodiversity in the 
study region

Include and discuss the following information in your report:
 (a) Map showing one of your final solutions (or a map showing selection frequency 

of your final solutions).
 (b) Trade-offs between planning unit cost and biodiversity protection. Find a range 

of SPF values or target values that illustrate this trade-off and include a trade-off 
curve.

 (c) Explain the rationale behind the degree of spatial compactness used to generate 
your results. Create a trade-off curve with various BLM values to help illustrate 
your point.

 (d) Read another scientific paper (or report) that uses these types of outputs, and 
then incorporate this study into your own report as context.

Your instructor will determine word/page limits depending on the amount of time 
you have to complete your assignment. Consider giving oral presentations of your 
results. See the online Appendix for this chapter for even more additional 
readings.

Acknowledgments We thank Patricia Sutcliffe for reviewing the chapter for us. We also thank 
Ian Ball, Eddie Game, Dan Segan, and many others for their work that we have drawn on in the 
production of this chapter. None of this work would have been possible without financial support 
from our funding organizations: the Department of Sustainability, Environment, Water, Population 
and Communities; the Australian Research Council funded Centre of Excellence for Environmental 
Decisions; the National Environmental Research Program funded Environmental Decisions Hub; 
and the Commonwealth Scientific and Industrial Research Organisation.

REFERENCES AND RECOMMENDED READINGS1

Ardron J, Possingham HP, Klein CJ (2010) Marxan good practices handbook, Version 2. University 
of Queensland, St. Lucia

Ball IR, Possingham HP (2000) MARXAN (V1.8.2): marine reserve design using spatially explicit 
annealing, a manual. marxan.net

*Ball IR, Possingham HP, Watts M (2009) Marxan and relatives: software for spatial conservation 
prioritisation. In: Moilanen A, Wilson KA, Possingham HP (eds) Spatial conservation prioriti-
sation: quantitative methods and computational tools. Oxford University Press, Oxford, 
pp 185–195; Chapter 14. This core Marxan reference presents a general overview, including 
mathematical equations for Marxan, as well as more recent developments, including Marxan 
with Zones, Marxan with Probability, and Marxan with Connectivity.

Ban N, Klein CJ (2009) Spatial socio-economic data as a cost in systematic marine conservation 
planning. Conserv Lett 2(5):206–215

*Beger M, Linke S, Watts M, Game E, Treml E, Ball IR, Possingham HP (2010) Incorporating asym-
metric connectivity into spatial decision making for conservation. Conserv Lett 3(5):359–368. 

1 NOTE: An asterisk preceding the entry indicates that it is a suggested reading.

13 Systematic Conservation Planning with Marxan



226

Describes various types of connectivity important to conservation and how they could be applied 
in Marxan.

*Carwardine J, Wilson KA, Watts ME, Etter A, Klein CJ, Possingham HP (2008) Avoiding costly 
conservation mistakes: the importance of defining actions and costs in spatial priority setting. 
PLoS One 3(7): e2586. Demonsrates how the explicit consideration of conservation actions 
and socioeconomic costs is critical to designing effective conservation plans.

Fischer DT, Church RL (2005) The SITES reserve selection system: a critical review. Environ 
Model Assess 10:215–228

Game ET, Grantham HS (2008) Marxan user manual: for Marxan version 1.8.10. University of 
Queensland, St. Lucia

*Game ET, Watts ME, Wooldridge S, Possingham HP (2008) Planning for persistence in marine 
reserves: a question of catastrophic importance. Ecol Appl 18(3):670–680. The first paper to 
apply the version of Marxan with Probability. It shows how marine reserves can be designed 
that achieve ecological targets whilst avoiding areas with a high chance of being destroyed by 
a catastrophic event, coral bleaching.

*Game ET, Lipsett-Moore G, Hamilton R, Peterson N, Kereseka J, Atu W, Watts ME, Possingham 
HP (2010) Informed opportunism for conservation planning in the Solomon Islands. Conserv 
Lett 4(1):38–46. Describes how the Lauru Land Conference of Tribal Communities and The 
Nature Conservancy have worked with the communities of Choiseul Province, Solomon Islands, 
to develop a conservation planning process that reconciles community-driven conservation 
opportunities, with a systematic and representation-based approach to prioritization.

Groves CR, Jensen DB, Valutis LL, Redford KH, Shaffer ML, Scott JM, Baumgartner JV, Higgins 
JV, Beck MW, Anderson MG (2002) Planning for biodiversity conservation: putting conserva-
tion science into practice. Bioscience 52(6):499–512

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 
220(4598):671–680

Klein CJ, Watts ME, Kircher L, Segan D, Game ET (2007–2011) Introduction to Marxan, course 
manuals. marxan.net/courses

Klein CJ, Chan A, Kircher L, Cundiff A, Gardner N, Hrovat Y, Scholz A, Kendall BE, Airamé S 
(2008) Striking a balance between biodiversity conservation and socioeconomic viability in the 
design of marine protected areas. Conserv Biol 22(3):691–700

*Klein CJ, Wilson, KA, Watts, ME, Stein, J, Berry, S, Carwardine, J, Stafford-Smith, DM, Mackey 
B, Possingham HP (2009) Incorporating ecological and evolutionary processes into continental- 
scale conservation planning. Ecol Appl 19:206–217. Shows four ways of capturing ecological 
and evolutionary processes in Marxan, inculding identifying connected subcatchments along 
waterways as priorities for conservation.

*Klein CJ, Steinback, C, Watts, ME, Scholz AJ, Possingham HP (2010) Spatial marine zoning for 
fisheries and conservation. Front Ecol Environ 8:349–353. First paper to apply Marxan with 
Zones. Shows how to zone a region for four different uses relevant to fishing and 
conservation.

Linke S, Watts ME, Stewart R, Possingham HP (2011) Using multivariate analysis to deliver con-
servation planning products that align with practitioner needs. Ecography 34:203–207

*Makino A, Klein CJ, Beger M, Jupiter SD, Possingham HP (2013) Incorporating conservation 
zone effectiveness for protecting biodiversity in marine planning. PLoS One 8(11), e78986. 
Describes how to use zone effectiveness when zoning for multiple uses using Marxan with 
Zones.

Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253
McDonnell MD, Possingham HP, Ball IR, Cousins EA (2002) Mathematical methods for spatially 

cohesive reserve design. Environ Model Assess 7:107–114
Moilanen A, Ball IR (2009) Heuristic and approximate optimization methods for spatial conserva-

tion prioritization. In: Moilanen A, Wilson KA, Possingham HP (eds) Spatial conservation 
prioritisation: quantitative methods and computational tools. Oxford University Press, Oxford

M.E. Watts et al.

marxan.net/courses


227

Moilanen A, Possingham H, Wilson KA (2009) Spatial conservation prioritization: past, present, 
future. In: Moilanen A, Wilson KA, Possingham HP (eds) Spatial conservation prioritisation: 
quantitative methods and computational tools. Oxford University Press, Oxford

Possingham HP, Ball IR, Andelman S (2000) Mathematical methods for identifying representative 
reserve networks. In: Ferson SB (ed) Quantitative methods for conservation biology. Springer, 
New York

Possingham HP, Andelman SJ, Noon BR, Trombulak S, Pulliam HR (2001) Making smart conser-
vation decisions. In: Orians G, Soule M (eds) Research priorities for conservation biology. 
Island Press, Washington, DC, pp 225–244

Possingham HP, Wilson KA, Andelman SJ, Vynne CH (2006) Protected areas: goals, limitations, 
and design. In: Groom MJ, Meffe GK, Carroll CR (eds) Principles of conservation biology. 
Sinauer, Sunderland

Pressey RL (2002) Classics in physical geography revisited. Prog Phys Geogr 26(3):434–441
Pressey RL, Bottrill MC (2009) Approaches to landscape- and seascape-scale conservation plan-

ning: convergence, contrasts and challenges. Oryx 43:464–475
Pressey RL, Humphries CJ, Margules CR, Vane-Wright RI, Williams PH (1993) Beyond oppor-

tunism: key principles or systematic reserve selection. Trends Ecol Evol 8:124–128
Segan DB, Game ET, Watts ME, Stewart RR, Possingham HP (2011) An interoperable decision 

support tool for conservation planning. Environ Model Software 26(12):1434–1441
Simberloff D (1998) Flagships, umbrellas, andkeystones: is single-species management passé in 

the landscape era? Biol Conserv 83(3):247–257
Soulè ME, Terborgh J (eds) (1999) Continental conservation: scientific foundations of regional 

reserve networks. Island Press, Washington, DC
Stewart RR, Possingham HP (2005) Efficiency, costs and trade-offs in marine reserve system 

design. Environ Model Assess 10:203–213
Stewart RR, Noyce T, Possingham HP (2003) Opportunity cost of ad hoc marine reserve design 

decisions: an example from South Australia. Mar Ecol Prog Ser 253:25–38
Watts ME, Stewart RR, Segan D, Kircher L, Possingham HP (2010) Using the zonae cogito deci-

sion support system, a manual. University of Queensland, Brisbane
Wilson KA, Carwardine J, Possingham HP (2009) Setting conservation priorities. Ann New York 

Acad Sci 1162:237–264

13 Systematic Conservation Planning with Marxan



229© Springer-Verlag New York 2017 
S.E. Gergel, M.G. Turner (eds.), Learning Landscape Ecology, 
DOI 10.1007/978-1-4939-6374-4_14

Chapter 14
Connectivity as the Amount of Reachable 
Habitat: Conservation Priorities and the Roles 
of Habitat Patches in Landscape Networks

Santiago Saura and Begoña de la Fuente

OBJECTIVES

Landscape connectivity plays an important role in sustaining ecological processes 
at different spatial and temporal scales (e.g., Crooks and Sanjayan, 2006). Landscape 
connectivity can help to counteract some of the adverse effects of habitat fragmenta-
tion and to facilitate species range shifts in response to climate change. Therefore, 
maintaining or enhancing landscape connectivity is a key part of current biodiver-
sity conservation efforts. A variety of metrics for analyzing connectivity have been 
developed, ranging from some derived from or used within metapopulation models 
(Hanski and Ovaskainen 2000; Moilanen and Nieminen 2002) to others based on 
network analysis (graph theory) (Ricotta et al. 2000; Urban and Keitt 2001; Estrada 
and Bodin 2008; Saura and Rubio 2010; Galpern et al. 2011; Rayfield et al. 2011). 
In particular, graph-based approaches have gained increasing popularity in ecologi-
cal research and applied conservation planning in recent years (Calabrese and Fagan 
2004; Saura and Pascual-Hortal 2007; Urban et al. 2009; Pereira et al. 2011; Awade 
et al. 2012; Rodriguez-Perez et al. 2014). Graphs are just a data structure, and, simi-
larly to vector or raster data structures in geographical information systems, differ-
ent outcomes of variable quality can be obtained through their use. A crucial issue 
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is how to measure and analyze connectivity in order to capture important aspects 
and provide meaningful guidance for conservation decisions. Through this lab, 
 students will:

 1. Analyze potential weaknesses and limitations of several widespread connectiv-
ity metrics for establishing conservation priorities;

 2. Understand why connectivity is not only related to connections between habitat 
patches but should also consider the contribution to connectivity coming from 
the amount of habitat within individual patches;

 3. Measure connectivity as the amount of available (reachable) habitat in the land-
scape using the Integral Index of Connectivity (IIC) and the Probability of 
Connectivity (PC) metrics (and understand their formulas, ingredients, and 
behavior);

 4. Learn to use the Conefor software to quantify landscape connectivity;
 5. Evaluate the importance and different roles of individual habitat patches as con-

nectivity providers; and
 6. Apply these concepts and tools to a real-world conservation case study;

This lab assumes you have already gained familiarity with the basics of spatial 
networks in Chapter 12. Here, we go a step further with a more in-depth analysis on 
how (and which) connectivity metrics can be used to prioritize landscape elements 
for conservation planning. You will explore situations where many connectivity 
metrics fail to provide appropriate answers, particularly when used for identification 
of specific key patches or links essential to connectivity. First, you will perform 
exercises “by hand” to learn some new metrics (Exercises 1, 2 and 3). In Exercises 
4 and 5 you will use Conefor, and in Exercise 6 you will combine Conefor with GIS 
for the analysis of a real-world example. Several printed handouts (available from 
the book website) will be helpful as you work through the exercises. While we 
frame this chapter within the context of a graph-theoretical approach for the analy-
sis of landscape connectivity, the concepts here presented and illustrated are of a 
wider reach; they apply in general to the way landscape connectivity is conceived 
and measured and to the quantification of the different roles of habitat patches in 
landscape networks.

 INTRODUCTION

Recall that a landscape graph consists of a set of nodes and links between them 
(Ricotta et al. 2000; Urban and Keitt 2001; Jordán et al. 2003; Pascual-Hortal and 
Saura 2006; Galpern et al. 2011; Rayfield et al. 2011). Nodes represent differenti-
ated habitat units, which generally correspond to habitat patches (as we will assume 
hereafter in this lab) but may also correspond to other options such as habitat cells, 
river segments, management units, or protected areas. Nodes can be weighted to 
incorporate some characteristic (attribute) of the habitat units such as habitat area, 
quality, or population size. For simplicity, Parts 1 and 2 of this lab we will assume 
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that the attribute corresponds to habitat patch area. Later, in Part 3, we will consider 
a case where habitat quality is incorporated in the attribute of the patches. Links 
represent ecological flow (usually the movement of an organism or species) directly 
between two habitat patches, without use of any intermediate stepping stone patch. 
Two patches not directly linked in the graph may still be connected through a path 
(a sequence of links) involving several stepping stone patches. A link may corre-
spond to a physical corridor or it may represent potential of an organism to directly 
disperse between two patches; however, links contain no habitat area. Any land-
scape element containing habitat is represented as a node even when its main role is 
to serve as a stepping stone or connector between other habitat areas.

For simplicity in this lab, we assume undirected graphs where the possibility of 
moving from patch i to patch j is the same as moving from j to i. However, the 
 concepts and metrics presented also apply to directed networks with asymmetric con-
nections such as wind-driven dispersal or water flows. In Exercises 1–5 we will con-
sider graphs with unweighted links (i.e., binary connection model where two patches 
are simply considered either directly connected or unconnected, with no intermediate 
modulation of the quality, strength, feasibility, or frequency of use of that connec-
tion). Later, in Exercise 6, we will consider a richer graph representation of the land-
scape (probabilistic connection model) in which links are weighted according to 
their ability or effectiveness in conducting a movement or ecological flows.

 Connectivity: Is it Just Between Habitat Patches?

A classic definition of landscape connectivity is “the degree to which the landscape 
facilitates or impedes movement among resource patches” (Taylor et al. 1993). This 
definition implies that landscape connectivity is related to and can be successfully 
addressed by only considering the number or quality of connections among habitat 
patches in the landscape. Consider the two landscapes in Figure 14.1. Which land-
scape is more connected? Consider your answer using some of the metrics you are 
familiar with from the previous chapter: number of components, number of links or 
link density.

Figure 14.1 Two simple hypothetical landscapes (a, b) illustrating the concept of habitat avail-
ability (reachability) at the landscape scale. Habitat patches (nodes) are shown in black and the 
links (direct connections) between the nodes are represented by dotted lines. Adapted from Saura 
(2008)
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Using many existing metrics, one would deduce that connectivity is higher in A 
than in B, since A contains eight links between patches while landscape B has no 
links. Similarly, landscape A would be regarded as more connected because all hab-
itat occurs within one component, whereas B consists of two completely isolated 
components (i.e., the two big patches). However, it makes little sense to consider 
landscape A more connected than B. No matter how well connected patches are in 
A, together they comprise less amount of available (reachable) habitat than either 
single patch in B (Pascual-Hortal and Saura 2006). Either one of the big isolated 
patches in B (on its own) contains more area of connected habitat than the entire 
area of habitat potentially reached via the links in landscape A. In fact, habitat loss 
and fragmentation of either patch in landscape B could lead to a pattern similar to 
landscape A. From the standpoint of conservation, fragmentation of one large patch 
should not be deemed more beneficial (or more connected) than the original con-
tinuous habitat patch.

Clearly, some connectivity metrics indicate higher connectivity in more frag-
mented landscapes (Tischendorf and Fahrig 2000). In fact, some metrics indicate 
zero connectivity in landscapes with one contiguous patch, even when the habitat 
patch occupies the entire landscape (Tischendorf and Fahrig 2000). Approaches and 
metrics that focus only on the connections between habitat patches (interpatch 
connectivity), while ignoring intrapatch connectivity (e.g., area of the patches), 
are problematic for informing conservation planning priorities or evaluating the 
impacts of landscape changes (Pascual-Hortal and Saura 2006; Saura and Pascual- 
Hortal 2007). When habitat patterns change through time, or when networks with 
differing numbers and sizes of patches are compared, metrics that only consider 
interpatch connectivity can provide misleading results.

The concept of habitat availability (or reachability) at the landscape scale 
helps to address these deficiencies (Pascual-Hortal and Saura 2006; Saura 2008; 
Saura and Rubio 2010) in two ways. First, it recognizes that a habitat patch pro-
vides (by itself) some amount of connected habitat—more connectivity within big-
ger patches—even when the patch is completely isolated from all other patches. 
Second, the connected area within habitat patches (i.e., intrapatch connectivity) 
should be measured along with the area made available by (or reachable through) 
connections with other patches (i.e., interpatch connectivity) (Pascual-Hortal and 
Saura 2006; Saura and Pascual-Hortal 2007; Saura and Rubio 2010). The habitat 
availability concept acknowledges that species may be able to reach a larger 
amount of habitat resources in the landscape either through bigger patches (intra-
patch connectivity) or through more or stronger connections among different 
patches (interpatch connectivity). More frequently, a combination of both will 
determine the total amount of available/reachable habitat in the landscape for a 
given species.

Through this chapter you will learn to understand and appropriately apply habi-
tat reachability metrics which account for intra- and interpatch connectivity.
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 EXERCISES

 Part 1. Understanding the Behavior and Limitations 
of Commonly Used Connectivity Metrics

Assume one wants to evaluate how important an individual habitat patch (or link) 
is to the maintenance of overall landscape connectivity, using a given landscape-
level connectivity metric X. One approach would be to calculate the relative change 
in the metric value (dX) after the removal of that patch (or link) from the habitat 
network:

 
dX

X X

X
% •( ) = -

100 initial removal

initial  

where Xinitial is the value of the connectivity metric in the initial or intact landscape 
and Xremoval is the metric value after the removal of a particular patch or link from the 
landscape.

This calculation can be repeated for any (or every) individual element in the 
landscape, and the resulting dX values would quantify the importance of each patch 
(or link) in maintaining landscape connectivity. Therefore, ranking patches by dX 
values can prioritize their value to sustaining connectivity and thus provide guid-
ance on where to concentrate conservation efforts. Similarly, dX values could also 
be calculated for landscape changes involving the loss of multiple patches and/or 
links.

There are a myriad of metrics to quantify the connectivity of landscape networks 
(e.g., Jordán et al. 2003; Galpern et al. 2011; Rayfield et al. 2011). Each would most 
likely yield different results for dX, and suggest different conservation priorities; 
therefore it is of utmost importance to scrutinize and understand the actual behavior, 
performance, and adequacy of various metrics. A key question is: What properties 
should a connectivity metric fulfill to be reliable for such conservation planning 
purposes?

To address this, you will examine the behavior of several commonly used con-
nectivity metrics in response to changes in habitat networks. Your goal is to evaluate 
whether these metrics can be reliably used for prioritizing habitat patches and links 
for connectivity conservation. In particular, you will examine three metrics that are 
easy to understand, widely used in connectivity analyses, and similar to metrics you 
learned about in Chapter 12 in this book:

• Number of Links (NL)—A link is a direct connection between different habitat 
patches.

• Number of Components (NC)—A component is a set of connected patches in 
which every patch can be reached from the others through at least one path 
(sequence of links). There are no links or paths between patches in different 
components.
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• Mean Component Size (MCS)—The size of a component is the sum of habitat 
areas for all patches within the component. MCS is the average size of all the 
components in the landscape.

Higher values of NL and MCS indicate more connectivity while the inverse inter-
pretation applies for NC. Upon patch removal, NL will never increase (and hence 
dNL ≥ 0). In contrast, dNC and dMCS can potentially yield positive or negative 
 values. Therefore, the most important landscape elements (patches or links) for 
connectivity according to NL and MCS would be indicated by the highest dNL and 
dMCS values when these elements are removed (which for dMCS may correspond 
either to the highest positive or the least negative values). For NC, the most impor-
tant landscape elements would be those that, when removed, produce the lowest 
dNC values (which may include negative dNC values).

EXERCISE 1: Response of Connectivity Metrics to Changes  
in Habitat Networks with Some Hypothetical Examples

Figure 14.2 shows six different hypothetical landscapes with their corresponding 
habitat networks (graphs with unweighted links). In each landscape, two different 
losses can occur—loss of either A or B—which generally correspond to different 
habitat patches. The exceptions are in landscape L5 where B corresponds to the 
link between two patches, and in landscape L6 where A corresponds to a compo-
nent made up of three patches and two links (identified by a dashed line).

Next, we’ll assume, due to budget constraints, that only A or B can be protected. 
Thus, a decision has to be made as to which element will be protected and which 
will be lost. When a patch is lost, all connected links are considered lost.

Q1  Visually examine the six landscapes in Figure 14.2. Based on your own qualita-
tive visual assessment (no detailed calculations), would the loss of A or B be 
more detrimental to habitat connectivity and availability (reachability) in each 
landscape? Which element (A or B) should be prioritized for conservation? 
Why? Consider that the reasons might be different for each of the six cases.

Q2  Next, you will systematically and quantitatively examine the behavior of NL, 
NC, and MCS to determine which of the two losses (A or B) is more detrimental 
to connectivity according to these three metrics. Evaluate using dNL, dNC, and 
dMCS values or simply from the absolute difference in the metric value before 
and after a change (Xinitial−Xremoval). Recall that higher NC values are assumed 
indicative of lower connectivity with the reverse is true for NL and MCS. Use 
the tables provided in Handout #1 (available on the website for the book) to 
organize your calculations. Example calculations are provided for landscapes 
L1 and L6 in Handout #1.
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Figure 14.2 Six simple landscapes comprising different sets of habitat patches or nodes (grey 
numbered circles) and links between them (solid lines). In each landscape two hypothetical losses 
can occur indicated by A and B. The big patches in L1 (patch 1) and L3 (patches 1 and 3) have a 
habitat area of 9 ha whereas the rest of the patches have a habitat area of 1 ha. See Exercise 1 for 
additional explanations. Later in Exercise 2, you will need to know that the total area of each 
landscape is 25 ha.
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Q3  What do you conclude about the behavior and reaction to spatial changes of 
these connectivity metrics? Would you advocate the use of NL, NC, or MCS as 
a basis for prioritizing landscape elements for the conservation of habitat con-
nectivity and availability or for evaluating the potential impacts of landscape 
changes in the ecological flows related to connectivity? Why?

 Part 2. Integrating Intrapatch and Interpatch Connectivity 
in a Single Measure: The Integral Index of Connectivity

Next you will explore new connectivity metrics which measure the amount of avail-
able (reachable) habitat in the landscape (Pascual-Hortal and Saura 2006; Saura and 
Pascual-Hortal 2007; Saura and Rubio 2010). These metrics integrate both intra-
patch (within patch) and interpatch (between-patch) connectivity in a single mea-
sure. In doing so, these new metrics address the main primary limitations of previous 
metrics you have examined.

Now, in Part 2, you will only consider the habitat availability metrics that are 
based on a binary connection model (graphs with unweighted links). These metrics 
are the Integral Index of Connectivity (IIC) and the related Equivalent 
Connectivity metric (EC(IIC)). In the particular case where the node attribute cor-
responds to habitat area, as in exercises in Part 2, the latter metric is referred to as 
the Equivalent Connected Area (ECA(IIC)). These metrics are described in 
Table 14.1. They derive from the same concept and way of measuring connectivity 
but are expressed in different units and over a different range of variation. Later, in 
Part 3, we will introduce a probabilistic version of these metrics corresponding to 
graphs with weighted links.

EXERCISE 2: Understanding IIC and ECA(IIC) Calculations

 1. Examine the definition of the IIC and EC(IIC) metrics given in Table 14.1. The 
latter metric will be referred to as ECA(IIC) hereafter, since we are using habitat 
area as the attribute of the nodes. Pay attention to the variable in these metrics 
that relates to the number of links in the shortest path between patches (nlij), 
which can take different values depending on the pair of patches considered, as 
described next.
• Interpatch connectivity is addressed in several ways. For a direct link 

between two patches, nlij = 1 (e.g., patches 2 and 3 in L1 in Figure 14.2). 
Indirect connections occur between patches if i and j belong to the same 
component (i.e., there is a path from i to j), but have no direct link. In such 
cases, 1 < nlij < ∞. This occurs for example for patches 9 and 10 in L4 in 
Figure 14.2, where nlij = 2. For unconnected patches (not connected through 
any path), nlij = ∞ (no matter how many links are traversed, movement from i 
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to j will never be achieved) and the numerator equals zero. This is the case for 
example for patches 1 and 2 in L1.

• Intrapatch connectivity is also accounted for. When i = j then nlij = 0 because 
no links are needed to reach a patch from itself. This relates to the habitat 
availability concept, in which a patch itself is considered to provide some 
connected habitat.

 2. Examine the example (partial calculation) of IIC and ECA(IIC) given in 
Table 14.2. Determine generally how these numbers correspond to landscape 
L3 in Figure 14.2 from which these calculations are derived. Remember that the 
total landscape area (AL as in Table 14.1) is 25 ha (as in all landscapes in 
Figure 14.2).

 3. Fill in the missing values in the table (use Handout #2) to ensure you understand 
the formulation of these calculations. Check your answers with your partner (or 
instructor) at each step, before proceeding.
• Note patches 1 and 3, which are very large compared to the rest of the net-

work. The large connected areas within these patches will make a large con-
tribution to the value of ECA(IIC) due to their high intrapatch connectivity.

Table 14.2 Calculation of the Integral Index of Connectivity (IIC) and the Equivalent Connected 
Area (ECA(IIC)) for landscape L3 in Figure 14.2. Some missing values need to be filled to 
complete the calculations

Patch i Patch j ai aj nlij

a a

nl
i j

ij

×

+1 å
×

+

a a

nl
i j

ij1

Intrapatch 
connectivity (i = j)

1 1 9 9 0 81 165
2 2 1 1 0 1
3 3 9 0
4 4 1 0 1
5 5 1 1 0 1

Interpatch 
connectivity for i < j

1 2 9 1 1 4.5 48.63
1 3 9 9 2 27
1 4 2.25
1 5 9 1 1.8
2 3 1 9 1 4.5
2 4 1 1 2 0.33
2 5 1 1 3 0.25
3 4 9 1 4.5
3 5 1 2
4 5 1 1 1 0.5

Interpatch 
connectivity for i > j

Same as above for i < j (undirected graphs) 48.63

Total connectivity (IICnum) = intrapatch + interpatch connectivity 262.26
IIC = IICnum / AL

2 = 262,26/252 = 0.4196
Equivalent Connected Area (ECA(IIC) = IICnum0.5) = 16.19 ha
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• Recall that connections are symmetric (as for undirected graphs). Thus, we 
can simplify the calculations for the interpatch connectivity by just consid-
ering the cases where i < j and use identical values for i > j.

• Due to the contribution of both intrapatch and interpatch connectivity 
ECA(IIC) = 16.19 ha, about 6 ha lower than the total habitat area (22 ha) in the 
network.

EXERCISE 3: Evaluating Changes in Connectivity (by-hand) Using 
Habitat Availability Metrics IIC and ECA(IIC)

Next you will explore some “by-hand” calculations in two of the simplest land-
scapes from Figure 14.2 to analyze the behavior of IIC and ECA(IIC). Later you will 
learn to use Conefor software to perform such computations more rapidly and auto-
matically which will be necessary when we move to analysis of real-world networks 
with a much larger number of patches.

Examine the example calculations for L1 (shown in a series of three tables in 
Handout #3 and described below). Remember that the total landscape area (AL) is 
25 ha for these landscapes. After you follow and understand these calculations for 
L1, you will follow the same procedure for L5. Recall your work from Table 14.2, 
which can be a useful guide together with the example calculations given next. Your 
goal is to determine: Does loss of a or b represent a bigger problem for 
connectivity?

 1. Calculations for intact landscape L1 are shown in Handout #3 Table (a).
 2. If we lose A (patch 1) from the landscape, the table simplifies to that shown in 

Table (b).
By losing A the IIC value decreases from IICinitial = 0.1344 to IICremove = 0.0048 

(the IICnum value decreases from IICnuminitial = 84 to IICnumremove = 3), which 
yields dIIC = 96.43%. Note that since the IIC and IICnum values are proportional 
(the former equals the latter divided by AL

2), dIIC and dIICnum values will be 
identical, and therefore you can use IICnum to calculate dIIC.

 3. If we lose B (patch 2) from the landscape, then the table simplifies to that shown 
in Table (c). 

By losing B the IIC value decreases from IICinitial = 0.1344 to IICremove = 0.1312 
(IICnum value decreases from IICnuminitial = 84 to IICnumremove = 82), which 
yields dIIC = 2.38%. This dIIC value is lower than the one obtained by losing A, 
which was 96.43%. Therefore, the loss of A would cause a much larger decrease 
in habitat connectivity and availability in this landscape, and thus A is more 
important than B according to IIC.

 4. Following the above example (detailed in Handout #3), perform the necessary 
calculations to analyze the behavior of IIC and ECA(IIC) for landscape L5. You 
may find it helpful to create a similar series of data tables for L5.

Q4  Which of the two possible losses (A or B) would be more detrimental for 
 connectivity (according to dIIC values) in landscape L5?
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 Introduction to Conefor Software

Although it is advisable to use hand calculations initially to fully understand these 
metrics, this is cumbersome and infeasible in realistic networks. Fortunately, these 
metrics have been implemented in the Conefor software available for download at 
http://www.conefor.org. Conefor calculates both the overall metrics for the whole 
landscape (e.g., IIC and EC(IIC)) and the patch-level importance (dIIC) for every 
patch in the network, among other outputs.

 INPUT

Conefor requires two input files for each network you wish to analyze: the node file 
and the connection file. Both are simple text files (with columns separated by tabs 
or spaces) that can be produced with any basic text editor (later in Part 3 you learn 
how to automatically generate these files using a custom-made GIS extension).

The node file simply has one row for each node and two columns. The first col-
umn identifies each node by a distinct node ID (integer value), and the second col-
umn contains its corresponding attribute value for that node (ai and aj in equations 
in Table 14.1, usually corresponding to habitat area).

In the case of landscape L3 in Figure 14.2, the node file is simply:

1 9
2 1
3 9
4 1
5 1

The connection file identifies connections between each pair of nodes, presented 
in three columns. The first two columns contain a pair of node IDs, whereas the 
third column characterizes the direct connection between the node pair. In our 
example, where connections correspond to binary links, they are represented as 1 
(linked) or 0 (not linked). Alternatively, distances or probabilities for each pair of 
nodes could be used. Because our connections are symmetric (undirected graphs), 
each pair of nodes needs to be listed only once, although both directions will be 
considered in the calculations. The ordering of pairs in the file has no effect on 
Conefor calculations.

In the case of landscape L3, the connection file would be as follows:

1 2 1
1 3 0
1 4 0
1 5 0
2 3 1
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2 4 0
2 5 0
3 4 1
3 5 0
4 5 1

The above format is used in a full connection file where all pairs of nodes are 
listed once.

It is also possible to list only node pairs with direct connections (links, 1 values 
only), to create a partial connection file. In such a file, any missing node pairs are 
considered not directly connected. The partial connection file is much shorter, with 
one line for each link, as follows:

1 2 1
2 3 1
3 4 1
4 5 1

EXERCISE 4: Using Conefor to Calculate the Importance  
of Nodes and Links

 1. Copy the entire folder Exercise 4 to C:\temp\ or C:\workspace\
 2. Open and examine the digital node, full, and partial connection files for L3 with 

any text editor. Do they match the above description?
 3. See the Conefor Instructions Handout for steps 3–7. 
  Using Conefor, be sure you can successfully run the example for L3 (using the 

provided files) before proceeding to subsequent steps. Calculate the IICnum, IIC, 
and ECA(IIC)  values for this landscape and check that you obtain the same val-
ues as in Table 14.2 above. Save your output files. 

 4. Build node and partial connection files for the other five landscapes in Figure 14.2. 
NOTE: Each of these files should end with a blank line.

 5. Using Conefor, calculate the dIIC values for each of the possible changes (A or 
B) in each of the six landscapes. Save your output files. In almost all the cases, 
loss of A or B corresponds to specific patches and the dIIC values will be calcu-
lated by Conefor in the node importance file. Exceptions include B in L5 and A 
in L6, explained next.

 6. B in L5 corresponds to the loss of a link. Thus, the dIIC value for this link is in 
the link importance file resulting from the link removal analysis in Conefor.

 7. Loss of A in L6 involves multiple patches and links. Conefor will not automati-
cally calculate the corresponding dIIC value. In this case you need to:
• Get the IIC or IICnum value corresponding to L6 (in the initial landscape, 

using the node and connection files created in step 4).
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• Build node and partial connection files corresponding to landscape L6 after 
the entire component A has been lost.

• Use these files in Conefor to calculate the IIC or IICnum values for this modi-
fied network.

• Calculate dIIC for the metric values before and after the loss of component A.

NOTE: Remember that the values of dIIC and dIICnum are, by definition, identical 
since AL is a constant that remains unvaried before and after any change in the land-
scape. You can therefore use either IIC or IICnum values to obtain the requested 
dIIC values.

 8. Complete the table in Handout #4. The results for L1 (from Exercise 3) are 
already included. Compare your Conefor results for L5 with your manually cal-
culated results from Exercise 3.

Q5  When considering the dIIC values, which of the two losses (A or B) is more 
detrimental to connectivity in each landscape? Does IIC identify conservation 
priorities in a way that is more relevant to your responses to Q1? Explain why.

 Understanding Three Distinct Fractions of Landscape 
Connectivity

Now that you are familiar with the habitat availability (reachability) metrics, we 
will examine the ingredients of the IIC metric in more detail and explore how these 
can be used to gain a more thorough understanding of the role of specific habitat 
patches in a network.

The dIIC values for a given patch can be partitioned into three distinct fractions 
which quantify the different ways a patch can contribute to habitat connectivity and 
availability in the landscape (i.e., contribute to the amount of reachable habitat) 
(Saura and Rubio 2010):

dIIC = dIICintra + dIICflux + dIICconnector

The intra fraction (dIICintra) is the contribution of the patch in terms of intra-
patch connectivity, corresponding to ai ⋅ aj/(1 + nlij) when i = j and, therefore, 
nlij = 0. It corresponds to the amount of habitat resources (habitat area, quality, or 
other attribute) provided by the patch (i.e., the amount available or reachable from 
within that patch). dIICintra is completely independent of the patch’s connec-
tions to other patches. This metric returns the same value even if the patch is com-
pletely isolated.

The flux fraction (dIICflux) corresponds to the dispersal flux (weighted by the 
focal patch attribute) through the connections of the focal patch with all other 
patches in the network. It assumes the focal patch is the starting (or ending) point of 
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the dispersal flux. This fraction depends on both the attribute of the focal patch and 
its position within the network. It corresponds to the sum ai ⋅ aj/(1 + nlij) for each 
node pair where i ≠ j. This fraction measures how well connected the focal patch is 
to the rest of the habitat in the landscape. It does not quantify the patch’s importance 
for maintaining connectivity among the other patches, however, which is quantified 
by the next fraction.

The connector fraction (dIICconnector) quantifies the contribution of the ana-
lyzed (focal) patch as a connecting element or stepping stone between other patches. 
This fraction depends only on the topological position of the patch in the network. 
The connector fraction for a focal patch is independent of the attributes of the focal 
patch, but accounts for attributes of other patches connected via it. Thus, the connec-
tor fraction for a patch will be higher when it connects patches with more habitat 
resources (higher ai).

dIICconnector for focal patch k corresponds to a part of the sum of ai ⋅ aj/(1 + nlij) 
for each pair of patches i and j in which i ≠ k, j ≠ k, and k is part of the shortest path 
between i and j. A given patch k will contribute to dIIC through the connector frac-
tion only when it is part of the shortest path between at least two other patches. The 
value of dIICconnector for patch k also depends on any alternative paths which, 
upon loss of patch k, still allow movement among other patches. If remaining alter-
native paths are nearly as good, the connector fraction for k will be low; if patch k is 
irreplaceable (its role cannot be compensated for by other patches or paths after its 
loss), then it will present a higher dIICconnector value. See Saura and Rubio (2010) 
and Bodin and Saura (2010) for further details and equations.

These three fractions allow for multifaceted, integrated connectivity analyses in 
which the different roles of habitat patches are measured using identical units and 
can be directly compared and summed (Saura and Rubio 2010). dIICintra measures 
intrapatch connectivity, while dIICflux and dIICconnector measure interpatch con-
nectivity. A patch will be more or less important (dIIC) due to one or more of these 
three fractions, depending on its local characteristics (i.e., attributes) and its topo-
logical position within the network. Since, by definition, links do not contain any 
habitat area, they do not provide intrapatch connectivity (thus, dIICintra = 0); nor can 
they be the starting or ending flux of any dispersal flux (thus, dIICflux = 0). As such, 
links can only contribute to dIIC through the dIICconnector fraction. Because the 
connecting role of nodes and links is measured in the same way by the dIICconnec-
tor fraction, their contributions can be directly compared.

EXERCISE 5: Examining Results from Intra, Flux, and Connector 
Fractions

Q6  Without making any calculations, which of the patches in each of the six networks 
in Figure 14.2 contribute via the intra fraction? Which contribute through the flux 
fraction? And which patches contribute through the connector fraction? Why?

S. Saura and B. de la Fuente



245

Q7  Go back to your results from Conefor where you calculated dIIC (for Q5). 
Examine the values for the three fractions (dIICintra, dIICflux, dIICconnector) 
for all the patches in Figure 14.2. How do these results compare to your answer 
to the previous Q6? Which patches present the highest values of each fraction 
in each landscape?

Q8  Without making any calculations, if the same procedure and fractions were 
used to evaluate links rather than patches, which links in the six landscapes in 
Figure 14.2 would have no importance according to dIIC? Why?

Q9  Use Conefor to calculate the dIIC values for each link in landscapes L2, L3, and 
L4, selecting the link removal mode under the link importance options (See 
Conefor Instructions Handout). Do these results match to your answer to previ-
ous Q8? Among the links with dIIC > 0, which are the most important and the 
least important ones in each landscape? Why?

 Part 3. Connectivity Conservation Planning 
for an Endangered Bird in Spain

The previous exercises demonstrated how IIC reacts to certain changes in habitat 
networks and how it can prioritize landscape elements for conservation, and also 
helped you understand what aspects of connectivity are being measured by this 
metric. Next, you will learn how to use habitat availability metrics and the Conefor 
software in a real-world case study for an endangered bird species in the region of 
Catalonia in Spain.

In Exercise 6, you will analyze connectivity using the probabilistic PC metric 
(Table 14.1). This metric considers more complex information about links using 
graphs with weighted links, but is otherwise conceptually similar to IIC. The dPC 
values can be partitioned in three distinct fractions as for dIIC (i.e., dPCintra, dPCflux, 
dPCconnector). An Equivalent Connectivity metric (EC(PC)) can also be calculated 
from the numerator of PC and it is denoted ECA(PC) when the node attribute is area 
(Table 14.1). You will also use Conefor with ArcGIS (or QGIS) to link GIS data to 
graph- based connectivity analyses. Upon completion, you will be able to adapt and 
apply the IIC and PC metrics and Conefor to other study areas and species for your 
own project.

 Understanding the Probability of Connectivity (PC) Metric

PC is based on a probabilistic connection model. Links are weighted by pij which is 
the probability of direct dispersal between patches i and j. The product probabil-
ity of a path is the product of all pij along the path. If intermediate patches are 
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traversed, the product probability of a path incorporates all intermediate links (Saura 
and Pascual-Hortal 2007).

A key ingredient in the formulation of PC is the maximum product probability 
(p*ij) (Table 14.1). This is the only ingredient that differs from IIC. p*ij identifies the 
maximum product probability among all possible paths between patches i and j to 
determine the “best” path (and thus, p*ij ≥ pij).

When patches i and j have a strong direct connection (e.g., close to each other), the 
maximum product probability path is the direct link connecting i and j, and then p*ij = pij. 
In contrast, if patches i and j are weakly or not connected through the direct link, the 
“best” (maximum product probability) path may follow several intermediate steps via 
stepping stone patches, yielding p*ij > pij. When two patches are completely isolated 
from each other (either due to great distance or barriers such as a road) and there is no 
possibility for movement between both patches, then p*ij = 0.

When i = j then p*ij = 1 because it is 100% certain that a patch can be reached 
from itself. This relates to the habitat availability (reachable habitat) concept, which 
accounts for the amount of habitat resources available within a patch (the intrapatch 
connectivity).

The maximum product probability path (quantified by p*ij) is not necessar-
ily the same as the shortest path for IIC where it is quantified as the number of 
links (nlij). An example using Figure 14.2 is instructive to consider. For example, in 
L2, assume pij = 0.5 for all links except p6,7 = 0.1. Given this, the direct link yields 
p6,7 = 0.1 whereas an indirect link (via patch 8) yields p*6,7 = 0.25 (8 is a stepping 
stone, therefore 0.5 × 0.5 = 0.25). Thus, a two-link path is a better option than the 
direct link between 6 and 7. The direct link between patches 6 and 7 is the shortest 
path according to IIC, but for PC, movement is better conducted via patch 8, when 
pij values are incorporated.

 Status of the Endangered Capercaillie in Spain

The capercaillie is one of the most endangered forest-dwelling bird species in Spain 
(Canut et al. 2011). We focus on the subspecies of capercaillie (Tetrao urogallus 
aquitanicus) endemic to the Pyrenees and its distribution in Catalonia (NE Spain), 
a region of 32,000 km2 (Figure 14.3). Its habitat in Catalonia is concentrated in 
upper montane and subalpine forests of the Pyrenees and Pre-Pyrenees (Figure 14.3). 
Decreasing populations with poor breeding success raise concerns about long-term 
persistence and habitat fragmentation is a major concern (Canut et al. 2011). 
Common conservation measures focus on protection of vital areas (leks, hibernating 
and breeding sites, etc.); however, this approach may not be sufficient to meet the 
birds’ broad spatial requirements. Sustaining functional connectivity among sub-
populations to facilitate dispersal and minimizing mortality risk (Canut et al. 2011) 
requires identification and conservation of areas most critical for habitat connectiv-
ity and habitat availability. You will address this using the PC metric and actual 
geodata on habitat quality for this species, with some simplifications and modifica-
tions for teaching purposes.

S. Saura and B. de la Fuente



247

 Habitat Mapping, Habitat Quality, and Node Creation

Habitat distribution data for the capercaillie in Catalonia (Figure 14.3) were obtained 
from the Catalan Breeding Bird Atlas 1999–2002 (Estrada et al. 2004). Presence–
absence data were gathered in ~3000 UTM 1 × 1 km cells. Field survey data were 
used to build a niche-based model estimating probability of occurrence (ranging 
from 0 to 1) in 1 x 1 km cells (described further in Estrada et al. 2004). Probability 
of occurrence can be used as a measure of habitat quality, so cells with a higher 
probability were considered more suitable and able to support more individuals 
(Estrada et al. 2004). The habitat distribution layer (capercaillie.shp) is a slightly 
modified and simplified version of these data. Only cells with a probability of cap-
ercaillie occurrence ≥ 0.1 are considered habitat for Exercise 6. Cells were grouped 
into 117 habitat patches (or nodes) comprising 1173 km2 total habitat (Figure 14.3). 
Habitat quality was calculated as the average probability of occurrence for all the 
1 × 1 km cells within a patch.

Figure 14.3 Location of the study area (Catalonia, NE Spain) and capercaillie habitat shown in 
black (see text for further details)
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Both the amount and the quality of habitat are relevant patch characteristics for 
this habitat analysis. Thus, the area-weighted habitat quality is used as the node 
attribute (ai) which corresponds to the product of habitat area × habitat quality. The 
values of habitat area and quality are provided for each patch in the GIS layer. 
Remember, since the patch attribute is not simply area, we will use EC (Equivalent 
Connectivity) rather than ECA (Equivalent Connected Area).

 Defining Links and Direct Dispersal Probabilities

Determining the strength of the links between habitat patches (pij values) involves 
two basic components (explained step-by-step, later in Exercise 6):

• Conefor Inputs extension. This runs in ArcGIS (or QGIS) and can be used to 
compute distances between the edges of habitat patches (dij) which are measured 
as Euclidean (straight-line) distances. This extension creates the connection file 
in the input format required by Conefor.

• Median dispersal distance (d) relates to the median distance individuals can 
reach when dispersing. When running Conefor, you will need to specify this 
distance. You will use a 5000 m median dispersal distance for capercaillie 
(derived from Menoni (1991) for the Pyrenees). By definition, pij = 0.5 for links 
between patches separated by distance d. For each pair of patches, pij values are 
calculated by Conefor using a (fairly typical) decreasing exponential function 
based on distance (e.g., Bunn et al. 2000; Hanski and Ovaskainen 2000; Urban 
and Keitt 2001; Saura and Pascual-Hortal 2007) where pij = 1 when the distance 
between patches is zero. The exponential decay rate is determined by the prob-
ability and dispersal distance specified by the user (here 0.5, and 5000 m, respec-
tively). Thus, in our case, patches separated by less than 5000 m will get assigned 
pij > 0.5, while patches separated by distances larger than d will be assigned 
pij < 0.5.

EXERCISE 6: Network Analysis for Capercaillie Habitat

Now you will analyze connectivity of the capercaillie habitat network using the PC 
metric from Conefor. This will enable you to evaluate the contribution of individual 
patches by examining dPC and its three fractions dPCintra, dPCflux, and dPCcon-
nector for each node. In addition to the capercaillie (with median dispersal distance 
d = 5000 m), you will also consider two hypothetical species dwelling in the same 
habitat with different dispersal abilities (d = 500 m and d = 50,000 m). You will com-
pare results and conservation guidelines for these three species.
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To do so, follow these steps, referring to the Conefor Instructions Handout when 
needed:
 1. Make sure that the point (and not the comma) is set as the decimal symbol in the 

regional configuration settings in your computer. Conefor will expect all the 
numerical values having the point as the decimal separator and no thousand sep-
arator, and will write the results in the same format. In North America, you will 
likely not need to worry about this step.

 2. Copy the entire folder Exercise 6 to C:\temp\ or wherever your instructor is cer-
tain you have full read/write permissions.

 3. Using ArcGIS or QGIS, open the capercaillie habitat layer (capercaillie.shp) 
and a layer of the study area boundary (catalonia.shp), located within the 
Exercise 6 folder. Examine the distribution of the habitat patches.

 4. In the GIS, open and examine the attribute table in the capercaillie.shp file and 
make the following changes:
• Create two new fields in the attribute table that correspond to the two columns 

needed in the Conefor node file. One field will contain a unique identifier (an 
integer) for each node whereas the other field (floating type) will contain the 
patch attribute. Name these two new fields NodeID and AreaQual, 
respectively.

• Fill the NodeID field with unique integer values for each feature (patch). In 
ArcGIS this can be done using the internal feature identifier of the layer (FID) as 
NodeID = FID + 1, so that NodeID ranges from 1 to the total number of patches. 
If using QGIS, use the variable $id to calculate the new field NodeID as $id + 1.

• Calculate AreaQual so that it contains the value of the attribute for each 
patch. Recall that here, this attribute equals the product of habitat patch area 
× habitat quality.

 5. Use the provided Conefor Inputs extension for ArcGIS or QGIS to generate 
the node and connection files in the format required for Conefor. The Conefor 
Inputs extension will calculate Euclidean (straight-line) edge-to- edge distances 
(here in meters) between all pairs of patches in the layer, and present this infor-
mation in the connection file. (NOTE: In ArcMap, you may need to select 
Customize—Toolbars—and select Conefor):
• In the ArcGIS extension, select to compute distances between all features.
• Select to calculate distances from feature edges.
• In the ArcGIS extension, use the ASCII text file as the output option.
• The names of the node and connection files will typically be: nodes_cap-

ercaillie.txt and distances_capercaillie.txt.
Check the online Conefor Inputs extension user manual (available from www.
conefor.org) for further details on the usage of the extension if needed.

 6. Open the two text files generated by the Conefor Inputs extension with any text 
editor and check for consistency before proceeding. (NOTE: The point “.” should 
be the decimal separator symbol and no thousand separator should be in the 
numbers. For example, 1234.5 is correctly formatted whereas 1,234.5 or 1234,5 
is not. Refer back to Step 1 if needed.)
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  7. Use Conefor to perform a network connectivity analysis with the PC metric 
using the node and connection files generated in the previous step. Specify the 
median dispersal distance for the capercaillie (d = 5000 m, corresponding to a 
pij = 0.5). See the Conefor Instructions Handout for more details on using this 
software.

  8. Save the following two files generated by Conefor:
• overall metric values (containing the PCnum and EC(PC) values for the 

entire habitat network)
• node importances (containing the values of dPC and its three fractions for 

every patch). The node importance file will also contain the dA values for 
every node, which is the percentage (%) of the total landscape attribute 
within a particular node (i.e., ai for a patch i divided by the sum of ai for all 
nodes). dA is not a connectivity metric but rather a useful “network-indepen-
dent” reference to compare with the connectivity metrics, as you will do 
later in this exercise.

  9. Open the node importance file as a table in ArcGIS or QGIS and join the 
numerical results to your original capercaillie habitat layer, based on the com-
mon field (node ID). 

 10. Repeat the analyses in steps 7 and 8 for two other hypothetical species with 
different median dispersal distances of d = 500 m and d = 50,000 m. See the 
Conefor Instructions Handout for more details if needed.

Q10  What is the Equivalent Connectivity EC(PC) value for capercaillie habitat in 
Catalonia? How can this value be interpreted? What are the EC(PC) values for 
the other two hypothetical species with d = 500 m and d = 50,000 m?

Q11  Without using Conefor, what are the minimum and maximum possible values 
of EC(PC) for this set of habitat patches? Consider two hypothetical species 
with zero and infinite dispersal abilities to answer this question.

Q12  Visually examine the capercaillie connectivity results using GIS. You might 
consider seven classes and natural breaks (jenks) to classify patches by impor-
tance values. According to dPC, which habitat areas are most important in 
maintaining overall habitat connectivity and availability?

Q13  How do the three fractions of the dPC metric (dPCintra, dPCflux, dPCconnec-
tor) distinguish the roles of different patches in the habitat network? Which 
patches likely exchange a larger number of individuals with other habitat areas? 
Which patches are best connected to the rest of the habitat in the landscape? 
Which patches function as important, somewhat irreplaceable stepping stones?

Q14  How important is the contribution of the three dPC fractions to total habitat 
connectivity and availability for the capercaillie? To answer this, determine 
the relative contribution made by each fraction. Compute this as the ratio 
between the sum of the delta values for a particular fraction across all the 
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patches, divided by the sum of the total dPC values across all patches. See the 
Conefor Instructions Handout for details.

Q15  Given the relative importance of these three fractions, which of the three patch 
roles is more appropriate for this network and species? How should manage-
ment approach the spatial priorities for capercaillie conservation?

Q16  Respond to the same questions as in Q14 and Q15, but now consider the other 
two species using the same habitat (d = 500 m and d = 50,000 m). Do the pri-
mary roles of habitat patches change as different species are considered? What 
implications does this have for the conservation of each species?

Q17  Determine the sum of the dPC values for all the habitat patches for the caper-
caillie (d = 5000 m). Does this value exceed 100%? Why?

Q18  Plot the dA values (X-axis) against the dPC values (Y-axis) for capercaillie 
patches (d = 5000 m). How similarly do dA and dPC prioritize patches? That 
is, are the most important patches ranked similarly?

Q19  Produce three new plots as above but instead with each of the dPC fractions 
(dPCintra, dPCflux, dPCconnector) in the Y-axis. Which of the fractions are 
more and less related to the local patch attributes (dA)? Why is this so?

Q20  Produce similar plots for the two species where d = 500 m and d = 50,000 m. 
What has changed, and why? Do local attributes (of individual patches) have 
more or less weight on the prioritization of patches given by the metric of 
habitat connectivity and availability?

 CONCLUSIONS

Many connectivity metrics have been developed and the choice of metric depends 
on the question at hand. However, to inform conservation planning or to evaluate the 
impacts of landscape change, metrics that only consider interpatch connectivity 
may provide misleading results. Connectivity should not be solely conceived of, or 
defined as, connectivity among patches in many cases. Rather, connectivity should 
be viewed as a landscape-level property describing the amount of habitat resources 
a species can reach: a combination of the resources within patches as well as those 
which can be reached via connections to other patches. Ecologically, it seems rea-
sonable that the amount of reachable habitat may be more related to species persis-
tence than (a) the total amount of habitat in the landscape (which ignores the 
likelihood of movement among the different patches) and (b) the connections among 
patches (which may not compensate for having less total habitat distributed in many 
smaller patches).

14 Connectivity as the Amount of Reachable Habitat: Conservation Priorities…



252

The IIC and PC metrics have been developed to address this new way of conceiv-
ing connectivity as the amount of reachable habitat. They provide enriched indica-
tors which incorporate the role of habitat amount and local patch characteristics in 
influencing connectivity. At the same time, they move beyond spatially blind assess-
ments by incorporating connectivity among patches. The intra, flux, and connector 
fractions allow for comparison of the different ways habitat patches contribute to 
habitat connectivity and availability. These fractions are measured in a common cur-
rency within an integrated conceptual and analytical framework enabling objective 
decision-making. When using IIC or PC, there is no risk of either overemphasizing 
or underestimating the importance of connecting elements between habitat patches 
when setting conservation priorities, since both alternatives are integrated and jointly 
considered in the same analysis.

 FURTHER APPLICATIONS

Through this chapter, you have learned to understand the IIC and PC metrics and 
the Conefor freeware package, and applied them to a real-world case study. There 
are however many other ways in which these concepts can be applied. The same 
analytical approach and metrics can be applied to guide restoration to increase land-
scape connectivity, or to help to identify focal areas to halt the spread of undesired 
diseases, forest fires, or invasive species. Additional applications throughout the 
world are provided at http://www.conefor.org/applications.html, where more 
details and references are available. Additional applications include using IIC and 
PC in the analysis of pond or river networks, endangered species conservation 
plans, design of urban ecological networks, seed deposition patterns by frugivorous 
birds, and applications in combination with least-cost paths and circuit theory mod-
els. Other applications include assessments of directional (non-symmetrical) con-
nectivity, evaluations of transnational protected area networks, mitigating barrier 
effects of transportation infrastructure, quantifying network vulnerability, evaluat-
ing long-distance spread over multiple generations, as well as assessments of the 
role of connectivity in influencing species diversity, distributions, colonization, or 
genetic diversity. The inspiration found in such applications, together with the 
understanding and practical skills that you have acquired throughout this chapter, 
should enable you to adapt and apply these approaches to other landscape manage-
ment plans and research projects.
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Chapter 15
Linking Landscapes and Metacommunities

Joseph R. Bennett* and Benjamin Gilbert*

OBJECTIVES

Landscape ecology is the study of interactions between spatial landscape patterns 
and ecological processes, typically examining real landscapes at broad spatial 
scales. Metacommunity ecology focuses more specifically on how spatial processes 
alter species interactions and typically involves a localized spatial extent and more 
abstracted spatial landscapes (Bolker, 2004). These disciplines have evolved some-
what independently, despite a shared interest in how organisms respond to and inter-
act with spatial phenomena. In this chapter, we combine perspectives from both 
disciplines using a suite of multivariate spatial statistical techniques designed to 
help understand the relative importance of abiotic factors (such as climatic gradi-
ents, geologic features, and resource availability) and biotic factors (such as preda-
tor territoriality and seed dispersal) in determining the abundances of species in 
communities. To illustrate these techniques, we use a well-known dataset of tropical 
trees. This lab will enable students to:

 1. Utilize semivariograms to examine and understand spatially autocorrelation in 
species and environmental data;

 2. Model distributions of species and communities along environmental gradients 
using redundancy analysis;
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 3. Gain familiarity with multivariate spatial regression as well as the associated 
tools of trend-surface analysis and eigenvector analysis; and

 4. Use joint modeling of abiotic and biotic factors to determine their influences on 
species distributions in a metacommunity.

The lab is divided into four parts, which build sequentially. In Part 1, we explore 
the concepts of spatial processes in metacommunities, linking the perspectives of 
both community and landscape ecology using tree species information from a long-
term vegetation study in Barro Colorado Island, Panama. In Part 2, we introduce 
how communities are measured in order to represent many species at once. We then 
show how multiple regression can be applied to model communities along abiotic 
environmental gradients. In Part 3, we introduce two types of spatial methods, 
called trend-surface analysis and eigenvector analysis, and apply these to the tropi-
cal tree species. Finally, in Part 4 we compare the abiotic and spatial determinants 
of metacommunity structure. We also use our results (from Part 3) to illustrate the 
advantages and disadvantages of each method, as well as important caveats in the 
spatial analysis of communities.

This lab aims to make several spatial statistical techniques accessible and under-
standable to those without extensive training in statistics. However, familiarity 
with basic regression, especially multiple regression, is extremely helpful. 
Familiarity with the concepts covered in Chapter 5 (basic semivariograms) is also 
assumed. This lab assumes prior familiarity with R (including installation proce-
dures), and thus is not intended as the first exposure to the R environment for 
instructors or students. That being noted, the provided R code (available on the 
book web site) is very well documented and numbered according the various 
Figures, Exercises, and Steps in the lab. The lab requires a computer running R ver-
sion 2.12.0 or higher and access to the datasets provided with this chapter available 
from the book web site.

 INTRODUCTION

Landscape ecology and metacommunity ecology offer different but complementary 
world views and approaches. Metacommunity ecology generally considers entire 
communities of species and their interactions in a quantitative and spatially explicit 
(or spatially implicit) way. Metacommunity theory is important for understanding 
how factors such as habitat suitability and species-specific dispersal abilities impact 
community-level responses such as alpha and beta diversity. Landscape ecology 
provides tools and approaches for understanding how the structure of the landscape 
alters diversity, thus offering a positive feedback between the disciplines. In this 
chapter, we combine the benefits of both approaches by using maps of species and 
the environment in conjunction with multivariate analyses of community composi-
tion to model relationships among species, underlying environmental conditions, 
and spatial locations.
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 Part 1. Biotic and Abiotic Influences in a Metacommunity

Ecologists know that all species are limited in part by resources, predators, competi-
tors, and diseases, and these items can be collectively considered to influence a spe-
cies’ niche. For our purposes, a working definition of a species’ niche is the 
environmental conditions that allow a species to persist, with “environmental condi-
tions” referring to the collective factors that influence reproduction and  mortality. To 
understand how biotic and abiotic components of a species’ niche influence its distri-
bution, we begin by considering one tree species from a 50 ha plot on Barro Colorado 
Island, Panama (BCI). Trichilia tuberculata is a new world tree species in the mahog-
any family and is relatively common in this forest. A map of its distribution (Figure 15.1, 
Panel A) shows that Trichilia appears to have a patchy distribution, with some areas 
having high densities (light shading) and other areas having a low density (dark areas).

The distribution of Trichilia may reflect areas of favorable environmental condi-
tions. Plant ecologists have hypothesized that these conditions are mainly based on 
available resources, such as nitrogen, an important nutrient for plants. Therefore, 

Figure 15.1 Important spatial relationships for Trichilia tuberculata Panel a. Abundance in the 
500 × 500 m sampling plot. Panel b. Relationship to mineralizable nitrogen. Panel c. Spatial clus-
tering of Trichilia. Panel d. Mineralizable nitrogen
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one hypothesis is that the distribution of Trichilia is caused by available nitrogen. 
By plotting the abundance of Trichilia against mineralizable nitrogen (Figure 15.1, 
Panel B), we make a preliminary exploration of this hypothesis. Modeling the rela-
tionship between Trichilia and mineralizable nitrogen using regression is a more 
quantitative way of testing this hypothesis.

Q1 How would you describe the distribution of Trichilia in the study area?

Q2  How would you describe the relationship between Trichilia and mineralizable N?

Q3  What are some other potential causes for Trichilia abundance patterns on the 
landscape in addition to nitrogen availability?

There is an important caveat to simply modeling species and environmental rela-
tionships without considering space. Species distributions can also be strongly 
influenced by spatial processes such as inter- or intraspecific competition from 
neighbors, dispersal, and foraging patterns of predators or herbivores. For example, 
windblown seeds, or even seeds such as those of Trichilia that are dispersed by large 
birds and mammals, tend to fall close to their parent. Relatively few seeds travel 
long distances (Muller-Landau et al. 2008) often creating clumpy patterns of spe-
cies distributions. Environmental characteristics also often show similar spatial pat-
terns (areas in close proximity share similar characteristics), making inferential 
tests based on these patterns difficult.

Variograms (explained more fully in Chapter 5) help illustrate this problem. In 
Figure 15.1, Panels C and D show how predictable Trichilia abundances and miner-
alizable nitrogen are at different lag distances. Recall that low variation (small val-
ues on the Y-axis) indicate that sample locations closer together tend to have similar 
values. Because this variation increases with distance between sample points, we 
deduce that sample locations that are closer together tend to have more similar val-
ues of both mineralizable nitrogen and Trichilia abundance. Since the pattern of 
Trichilia based on dispersal alone would also be clumped, we cannot be sure of the 
extent to which mineralizable nitrogen influences Trichilia distributions, indepen-
dent of the effect of dispersal. In the case of Trichilia, or any single species, mixed 
models are well suited to account for spatial autocorrelation that is separate from the 
effect of abiotic variables (Zuur et al. 2009). However, when considering the 
responses of an entire community, a more common approach is to use multivariate 
partitioning methods, which we explore next.

 Part 2. RDA for Modeling Abiotic Gradients

To illustrate how multivariate partitioning methods work, we will first model the 
response of a community to abiotic gradients only. When modeling the entire com-
munity, we cannot simply do statistical tests for each species because the large 
number of tests would inflate the Type 1 error. Testing a large number of 
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environmental variables against each species would make the problem even worse. 
Therefore, an analytical method that models how the abundances of individual spe-
cies change along the abiotic gradients and can test this for the entire community at 
once using a global statistic is extremely useful.

Ordination is a way of projecting relationships among multiple samples, predic-
tor and response variables into mathematical space in more than one dimension, 
where the first axis represents the greatest amount of variability and each subsequent 
axis is uncorrelated with the previous ones. In a nutshell, ordination algorithms find 
a configuration of samples (or species) in mathematical space that best represents 
differences among them. Mathematically, there are a number of ways in which ordi-
nation algorithms can work (see Jongman et al. (1995) and Lepš and Šmilauer (2003) 
for details). We use two methods we use in this chapter: principal component anal-
ysis (PCA) and principal coordinate analysis (PCoA) which use an analytic solu-
tion to compute the mathematical distances. The resulting site scores represent 
positions of sites relative to each other in mathematical space and will be similar for 
samples with similar species abundances. Likewise, species commonly found 
together will have similar species scores.

Constrained ordination is simply ordination performed after the response vari-
ables (site or species scores) are obtained from a regression on the predictor vari-
ables. Redundancy analysis (RDA) is a constrained ordination technique that 
explicitly models linear relationships among multiple predictor variables and uses a 
randomization approach that statistically tests the strength of these relationships. In 
our case, we will create an RDA where species scores are predicted by regression 
on the environmental (or spatial) variables, and the new site scores are those gener-
ated by these predictions. The ordination results now correspond to the greatest 
variability in the dataset that can be explained by the measured variables.

EXERCISE 1: Data Preparation

The first step involves reading in the data and creating the two matrices that we 
need. The data provided (see R code available from the web site) have been orga-
nized for multivariate analyses:

• Rows represent sample sites, and columns hold information on species abun-
dances or predictor variables.

• By looking at the subsets of the data matrices provided, you can get an idea of 
the data characteristics. For example, sample locations are spaced along a 20 m 
grid, with observations at x or y locations of 10, 30, 50, and so on.

• The 25 species included in the dataset are represented by six letter codes, with 
the full species names for these codes given at https://repository.si.edu/han-
dle/10088/20925. For example, Trichilia is represented by the code TRI2TU.

• Finally, you can see that 13 soil variables were collected. Details on these soil 
variables are given at: http://biogeodb.stri.si.edu/bioinformatics/bci_soil_map/.
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Since RDA is essentially an extension of linear regression, it is important to note 
that linear relationships with independent variables are tested; thus, variables may 
need to be transformed to achieve linearity. In addition, in order for the ordination 
portion of the RDA to work correctly, species data often need to be transformed to 
avoid creating a “horseshoe effect” (see Lepš and Šmilauer 2003 for details). For this 
chapter, we use a transformation called the Hellinger transformation that has been 
shown to work for a wide range of communities (Legendre and Gallagher 2001). 
Scientists who are interested in other transformations should consult Legendre and 
Legendre (1998).

Each environmental variable needs to be transformed if it is related to a nonlinear 
change in species scores. The choice of transformation is extremely important for 
inferring the relationship between species and the predictor variables (Gilbert and 
Bennett 2010), and requires considerable thought. Species or community responses 
to environmental variables are often nonlinear, so for the soils data we need to build 
a dataset that includes transformations for each variable that can model nonlinear 
response. From our initial analysis of the data, using visual inspection of trends, 
spline graphs, and polynomial regressions, we opted to use a third-order polynomial 
transformation of each variable. We chose polynomials in this case because they are 
relatively simple and flexible transformations and opted for the smallest polynomial 
that appeared to fit the data sufficiently well.

EXERCISE 2: Species-Environment RDA

Now that we have the two data matrices, we can perform the species- environment 
RDA. The significance of the relationship between the species matrix and the envi-
ronmental matrix is determined with a Monte Carlo permutation procedure that tests 
whether the association between the matrices is stronger than expected by chance. 
This is done by comparing the test statistic from the true data to the test statistic that 
would be generated if the data were randomly assigned to sample plots. If the test 
statistic from the true data is higher than 95% of the random ones, the P-value is 
0.05; if it’s higher than 99% of the random ones, then the P-value is 0.01, etc.

Selection of significant variables in ordination has similar problems with model 
selection in regular multiple regression. Here, we use a forward selection method 
that attempts to control for model selection errors, using an adjusted R2 that accounts 
for the number of variables used (Blanchet et al. 2008). The method makes sure the 
adjusted R2 from all of the selected variables never exceeds the adjusted R2 for the 
full model that includes all of the variables. In particular, we first do an RDA of the 
entire data soil matrix versus the species matrix to get the output in Table 15.1. The 
p-value on the right (0.005) is the value from the permutation.

Q4  What does significance in the full model mean? What would lack of signifi-
cance mean?

Because this first test of the full model is significant, we go on to use a constrained 
forward selection, which is analogous to forward stepwise multiple regression.
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Q5  What single soil variable explained the most variation? (HINT: type “fwd.sel” 
to see the forward selection results).

It is important to note that the number of significant variables can change from one 
analysis to another because the RDA uses a randomization procedure; a variable 
that is marginally significant in one run (say, p value of 0.047–0.053) could change 
to insignificant in another run, or vice versa. This can be resolved by increasing the 
number of randomizations, but also reflects the problem of choosing an arbitrary 
significance level.

We can now do the analysis with the selected variables only, obtaining the output 
found in Table 15.2. We can see from this output that there is a significant influence 
of the selected environmental variables on community composition.

EXERCISE 3: Exploring the Results—Variation Explained

An important step in constrained ordination is to determine the amount of variation 
explained (R2) in the community by the included variables. The simple R2 is calcu-
lated by dividing the variation accounted for by the environmental variables (termed 
the “constrained inertia”) by the total variation in the species dataset (the “total 
inertia”). Our uncorrected R2 is 0.29, meaning that 29% of the variation in species 
distributions is explained by the selected soil variables. However, a correction is 
necessary to account of the number of independent variables tested, just as an 
adjusted R2 is used in multiple regression. In the corrected model, the explained 
variation by environmental variables is 0.25 or 25%. We can also find the order of 
variable selection, from the first (the variable that on its own explains the most 
variation) to the last significant variable.

Table 15.2 Result from RDA that includes only significant soil variables from forward selection

Model: rda(X = species.matrix, Y = soil.selected)

Df Var F N.Perm Pr(>F)

Model  32 0.05659 7.6554 199 0.005**

Residual 592 0.13675

Table 15.1 Result from RDA that includes all soil variables as predictors

Permutation test for rda under reduced model

Model: rda(X = species.matrix, Y = soil.matrix)

Df Var F N.Perm Pr(>F)

Model  39 0.058567 6.5182 199 0.005**

Residual 585 0.134776
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Using the R code in the Appendix, we’ll look at the first five variables (Table 15.3). 
You’ll notice in the table that the cumulative R2 (that includes the  variable and all 
previously selected ones) as well as adjusted cumulative R2 are presented. Once the 
last variable is selected, the cumulative adjusted R2 is equal to the adjusted R2.

EXERCISE 4: Exploring the Results Graphically

We can also explore our results graphically by using an ordination plot (Figure 15.2), 
which plots species and site scores on the axes described above. In Figure 15.2, we 
graph only the five most important soil variables to simplify the presentation, but the 
R code in the online appendix can be used to plot all variables. The ordination plot 
includes sample sites, species, and independent variables on the first two ordination 
axes (Figure 15.2). There are different ways to scale these plots (see R help for CCA.
plot and also Legendre and Legendre 1998). Here, we have used “species” scaling, 
which can be interpreted as follows. The angles between the arrows that point to each 
environmental variable represent the correlations between those variables. For exam-
ple, potassium (K1) and aluminum (A1) are strongly negatively correlated, as they 
point in almost opposite directions. Similarly, if a line were drawn from the plot 
center to each species, the angles between each pair of lines would represent the cor-
relation between species abundances. For example, abundances of the species labeled 
DRYPST and HIRTTR are also strongly correlated and are higher at high potassium 
and low aluminum levels. The length of the arrows along the ordination axes indicate 
the strength of their relationship to each axis, with phosphorus (P1) being more 
closely related to the first axis than mineralizable N (N_min1), for example.

Q6  Examine the distribution of Trichilia (TRI2TU) along the mineralizable nitro-
gen (N_min1) gradient in Figure 15.1. Where are TRI2TU and N_min1 in the 
ordination figure? What does the location of the arrow head and the species tell 
you?

Q7  Using the same approach as in the question above, name a species that should 
occur at higher abundances when there are large amounts of copper (Cu1) pres-
ent. Use R to graph the abundance of this species relative to copper to see if 
your prediction is correct.

Table 15.3 The first 5 variables selected in the forward selection

Variables Order R2 R2Cum AdjR2Cum F Pval

1 P1 25 0.084913 0.084913 0.083444 57.80954 0.001

2 Al1  1 0.030145 0.115058 0.112212 21.18773 0.001

3 K1 16 0.019986 0.135043 0.130865 14.34904 0.001

4 Cu1 10 0.013505 0.148548 0.143055 9.833824 0.001

5 N_min1 34 0.013006 0.161554 0.154782 9.601939 0.001
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Q8  Species can also be negatively correlated to specific resources. Find the species 
VIROSE. How do you think this species’ abundance will change with soil phos-
phorus (P1)? Use R to graph the abundance of this species relative to copper.

 Part 3. Accounting for Space in Community Analyses

Quantifying spatial changes in distributions of species and communities, and then 
attributing these changes to specific causes, can be quite difficult. As mentioned 
previously, spatially correlated environmental factors are not the only possible 
causes of the spatial distributions of organisms. Biotic factors such as dispersal, 
inter- and intraspecific competition, predation, and disease can also create spatial 
patterns which may be distinct. For example, intraspecific competition promotes 
negative spatial autocorrelation among species and communities while dispersal 
limitation promotes positive spatial autocorrelation. However, some patterns may 
not be distinct; for example, disease may promote negative spatial autocorrelation 
(similar to intraspecific competition) since close proximity of individuals may 
increase risk of infection. The refinement of techniques to attribute spatial change to 

Figure 15.2 Biplot showing species (six letter codes) and soil resources (vectors with letters at 
end)

15 Linking Landscapes and Metacommunities



264

specific causes is an active area of ecological research (Diniz-Filho et al. 2003; 
Gilbert and Bennett 2010).

For the multivariate statistics that we are presenting, the common method for 
modeling spatial patterns is to use regression-based approaches to model the abun-
dances of species or changes in community composition as a function of location. 
While the many methods used for multivariate spatial analysis are well beyond the 
scope of this chapter, here we present two commonly used methods: trend-surface 
analysis and Moran’s eigenvector mapping (MEM). Both approaches are used 
within the RDA framework and can help us ask what type of spatial patterns might 
result from a given process and then test which spatial variables can model these 
patterns. We outline each approach below, and explain the reasoning behind using 
one or the other in different situations.

EXERCISE 5: Polynomial Trend-Surface Analysis

Using polynomials to model nonlinear spatial patterns in communities is very simi-
lar to using them to model nonlinear changes due to environmental factors. Instead 
of polynomials of environmental variables, we generate polynomials of the centered 
X and Y coordinates of our spatial data. In particular, if all plots have an x and y 
location (in meters or UTMs), the trend-surface is a polynomial function of those x 
and y locations so that predictor variables are: X, Y, X2, Y2, XY, X2Y, XY2, X3, Y3. We 
can then use these variables in RDA, in a similar forward-selection process to that 
used for the environmental polynomials.

 Q9  Use the code provided in the Appendix to conduct a forward selection of the 
spatial polynomials. What variables were selected in the forward-selection 
process? How does the number of spatial variables compare with the number 
of environmental variables that were selected in the last section?

Q10  How much variation was explained by the spatial variables in the analyses 
above? How does that compare with the variation explained by the initial 
analyses of environmental variables?

Q11  Do you think it is valid to add the variation explained by environmental and 
spatial variables, as analyzed so far, to get the full variation explained by both? 
Why or why not? (HINT: reexamine Figure 15.1).

EXERCISE 6: Moran’s Eigenvector Maps

The second approach that we demonstrate, called Moran’s Eigenvector Maps 
(MEM), is an adaptation of an earlier method, called principal coordinates of neigh-
bor matrices (PCNM) that is still frequently used. The simplest explanation of the 
MEM approach is that it uses a series of waves to model a spatial pattern to fit 
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complex spatial relationships among samples. This approach is similar to spectral 
analysis, with a more detailed explanation found in Dray et al. (2006) and Peres-
Neto and Legendre (2010). We will use a step-by-step process that generates 
MEM. This process can take a long time because some of the randomizations are 
computer intensive. If time is short, your instructor may choose to skip steps 1–5 
(see “Shortcut” in appendix R code), or assign them as homework.

The MEM technique has several components:

Step 1: Create a distance matrix. This matrix should represent the spatial distances 
among all sample sites.

Step 2: Simplify the distance matrix. Ensure that all distances that are greater than 
a critical value are all assigned the same (large) value.

Step 3: Conduct a principal coordinates analysis (PCOORD) on the simplified 
distance matrix. PCOORD is another ordination technique that represents the dis-
tances among samples in different dimensions. These dimensions are the same as 
the axes of an ordination plot, as explained above, and the axes are called eigenvec-
tors. The technique can be used to represent spatial relationships among samples 
that are not readily apparent to us, for example, wave patterns of repeating spatial 
clusters, and other complex, nonlinear relationships.

Step 4: Test the eigenvectors for significant spatial autocorrelation. Some of the 
eigenvectors are not spatially autocorrelated thus including them is equivalent to 
including useless predictor variables in a regression. For the purposes of this chap-
ter, we consider only significant positive autocorrelation. We retain only the axes 
that indicate strong positive spatial structure by only considering those values of 
Moran’s I that are positive and statistically significant. (NOTE: Depending on the 
size of the dataset and available computing power, the randomizations may require 
a lot of time (up to an hour for this particular dataset).

Q12  The “dim” function gives the dimensions of the dataset (i.e., the number of 
rows and columns). How many eigenvectors show positive and significant 
autocorrelation? How does this compare to the number of predictors in the 
trend-surface analysis and in the environmental analysis?

Step 5: Remove linear trends. The vectors created using MEM are good at detecting 
nonlinear patterns at a finer scale than the trend-surface analysis. However, they are 
not good at detecting linear trends, which can cause analysis problems. We therefore 
do a separate analysis of the linear spatial trends over the sample area and include this 
in the total spatial signal. In our case, we have already included linear x and y trends in 
the trend-surface analysis, and we know that they are significant. So, we first remove 
the effects of these predictors on species distributions, and then test the significance of 
the MEM axes on the residuals. We use the usual forward selection procedure, plus an 
additional selection criterion that is designed to help with over-fitting problems that 
have been observed with eigenvectors like MEMs (see Gilbert and Bennett 2010).

15 Linking Landscapes and Metacommunities



266

Step 6: Perform RDA with Species and MEM. We now do the analysis on the 
selected variables and determine the variation explained, as with the previous exam-
ples (Table 15.4).

Q13  How many spatial variables were in this analysis? What is the corrected R2 for the 
spatial signal using MEM? Is this very different from the uncorrected R2? Why is 
that? How does this compare with the corrected R2 of the spatial polynomials?

 Part 4. Variation Partitioning 

As we have noted, the spatial determinants of species composition may be environ-
mentally correlated, which can lead to problems if we draw conclusions from envi-
ronmental analyses without considering spatial signals, or conversely, from spatial 
analyses without considering environmental factors. We therefore need a technique 
that will allow us to divide the signal of community change into separate environ-
mental and spatial components, as well as the component that is shared between 
them. Variation partitioning (Borcard et al. 1992; Figure 15.3) allows different 
independent components of variation to be allocated. The technique works in steps 
using simple algebra and requires results from three separate constrained ordina-
tions. Because you will need information from prior Exercise 6, we continue num-
bering our steps from the previous exercise.

Table 15.4 Results from RDA that include only significant MEMs

Permutation test for rda under reduced model

Model: rda(X = species.matrix, Y = MEM.selected)

Df Var F N.Perm Pr(>F)

Model  61 0.084236 7.1256 199 0.005**

Residual 563 0.109107

Figure 15.3 Representation of variation explained in variation partitioning. The entire area 
(A + B + C + D) represents the total variation in the dataset, and the grey rectangles represent varia-
tion explained by each component. Segment A represents the component of variation explained 
solely by environmental variables, while segment C represents the component solely explained by 
spatial variables, and segment B represents variation jointly explained by spatial and environmen-
tal variables. D represents unexplained variation
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Step 7: Record the Variation Explained by the RDA with Environmental Variables. 
The corrected R2 result from Exercise 3 (RDA using forward-selected environmen-
tal variables) gives this portion of the variation explained. In Figure 15.3, the varia-
tion explained from this ordination is represented by A + B.

Step 8: Record the Variation Explained by the RDA with Spatial Variables. The 
corrected R2 result from either the trend-surface analysis (Exercise 5) OR the RDA 
with MEM (Exercise 6, Step 6) gives this portion of variation explained. In 
Figure 15.3, the variation explained from this ordination is represented by B + C.

Step 9: Record the Variation Explained by an RDA with all Significant Spatial 
and Environmental Variables. This involves creating a dataset that includes the 
selected environmental variables from Exercise 2 and spatial variables from Exercise 
5 or Exercise 6, Step 6. In Figure 15.3, the variation explained form this ordination 
is represented by A + B + C.

EXERCISE 7: Partition the Variation Explained

Variation explained solely by environmental variables is represented by component 
A; variation explained solely by spatial variables by component C; and shared varia-
tion by component B. All of these can be derived using algebra. Depending on the 
research question, ecologists may be interested in any combination of the compo-
nents above. The shared spatial, shared environmental, and total explained variation 
are easily attained using the ordinations described above.

In order to get component A (the independent environmental signal), take the 
variation explained by all selected variables (A + B + C), and subtract the variation 

Table 15.5 Results from partitioning spatial (trend-surface) and soil variables

Explanatory tables:

X1: soil.selected

X2: t.s.selected

No. of explanatory tables: 2

Total variation (SS): 120.65

Variance: 0.19334

No. of observations: 625

Partition table:

Df R2 AdjR2 Testable

[a + b] = X1 32 0.29269 0.25446 TRUE

[b + c] = X2  9 0.20996 0.1984 TRUE

[a + b + c] = X1 + X2 41 0.34799 0.30214 TRUE

Individual Fractions

[a] = X1|X2 32 0.10374 TRUE

[b]  0 0.15072 FALSE

[c] = X2|X1  9 0.04768 TRUE

[d] = Residuals 0.69786 FALSE
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explained by the spatial and shared component: (A + B + C)−(B + C) = A. This is 
accomplished by subtracting the variation explained in Step 9 from that in Step 8. 
Similarly, to get component C (the independent, or “pure” spatial signal), take the 
variation explained by all selected variables (A + B + C, Step 9), and subtract the 
variation explained by the environmental and shared component (A + B, Step 7).

The partitioning of these components can also be calculated directly with a spe-
cialized function in R. For example, Table 15.5 gives the results from partitioning 
the environmental and trend-surface components. In this output, the fraction 
“[a + b]” or variable “X1”, refers to the environmental plus shared variation explained 
(A + B in the figure above). Likewise, “[b + c]” or variable “X2” refers to the spatial 
plus shared variation (B + C in the figure above) while individual fractions refer to 
the “pure” environmental or spatial variation explained (“[a]” and “[c]”, respec-
tively), and the shared variation “[b]”. Component “[d]”, the residuals, refers to the 
variation that is NOT explained by the ordination.

Q14  What is the total (adjusted) variation explained by the ordination? What signal 
appears greater, space, or environment? How does the variation explained by 
either fraction compare to the shared variation, and what does this mean, in 
terms of interpretation of results?

Q15  Partition the variation explained by the MEM spatial predictors and the soil 
variables. How do these results differ from the trend-surface results above? 
Why do you think these techniques give different results?

The differences in signals using the trend-surface and MEM techniques illustrate an 
important aspect of spatial analysis: the method of representing the spatial configura-
tion of samples or communities on a landscape can have profound influences on the 
results. Recall that the polynomial trend-surface model the spatial signal as curves that 
can be drawn on a map while the MEMs model space as a series of waves with differ-
ent periodicities. The latter technique is much more flexible in terms of what is consid-
ered “spatial,” making it difficult to attribute specific biological causes to the signal. 
Given these differences, it is important to keep in mind one’s original research question 
when choosing a sampling configuration and an analytical technique. Similarly, the 
sampling design can also influence the outcome of these analyses: sample plots that are 
surveyed with spatial lags of kilometers are unlikely to show the same patterns as con-
tiguous plots (see Fortin and Dale 2005 for details on this issue). Below, we clarify 
how these results can be interpreted and incorporated into landscape level models.

EXERCISE 8: Testing the Independent Components

Although we have already tested the significance of shared components (A + B, for 
example), we have not yet tested the independent components. The significance of 
the independent environment component (A) can only be tested by including the 
spatial component (B + C) as a covariate. Similarly, the independent spatial compo-
nent (C) is tested by including the environmental component (A + B) as a covariate.
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Using the R code in the Appendix, we can see from testing both of these fractions 
that when using the spatial trend-surface predictors, each component is significant.

EXERCISE 9: Interpreting and Applying the Partitioning Results

Many studies in spatial ecology have stopped after step 10 and reported the variation 
partitioning results as evidence for environmental or biotic processes. This approach 
must be taken with caution. It has been shown that partitioning results can give a 
good indication of the processes at work; however, they are sensitive to sampling 
design, unmeasured (especially spatially structured) variables, the spatial model 
used (MEM or trend-surface), and whether correct transformations of environmen-
tal variables were used (Legendre and Legendre 1998; Gilbert and Bennett 2010).

Despite these reservations about strictly interpreting partitioning results, the 
separate components do contain information that is extremely useful to landscape 
ecologists. In particular, the component B (Figure 15.3, Table 15.5) represents the 
spatially structured environment that predicts species distributions. Although com-
ponent B cannot be tested statistically, it can be compared with other components. 
A large amount of explained variation in this component indicates that some portion 
of species’ spatial distributions are explained by spatially structured environmental 
variables. One method of better understanding this component is to examine how 
much of a variable’s predictive power is spatially structured.

We do this for the five most significant variables (Table 15.6). We can see that for 
the tropical forest studied, the most important predictors are strongly spatially struc-
tured (Table 15.6).

The spatial structure of these variables, determined using the methods presented 
earlier and elsewhere in this book, can be employed in landscape models that explic-
itly consider how spatial processes may work in conjunction with responses to abi-
otic variables. The important benefit of the partitioning approach is that it has 
allowed us to identify the abiotic variables that are significant predictors of species 
distributions, and also provide an indication of how well spatially explicit landscape 
models could capture the effects of these predictors.

Table 15.6 Exploring the spatial structure of important soil explanatory variables

Variable
Component  
A + B * Component A Component B

Percent spatial  
(100*B/(A + B))

P1 0.085 0.014 0.071 83.079

Al1 0.043 0.006 0.037 85.586

K1 0.033 0.008 0.026 76.908

Cu1 0.067 0.010 0.056 84.753

N_min1 0.042 0.005 0.037 88.407

These numbers differ from Table 15.3 because the variables are tested individually, without con-
sidering the correlations with other variables
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CONCLUSIONS

When contrasting spatial and environmental signals, it is important to realize that 
the two signals are almost always somehow intertwined. Figure 15.1 illustrates such 
a relationship in the BCI dataset. In fact, nearly all environmental variables have a 
spatial component: hard environmental boundaries such as sheer cliffs are not nearly 
as common as more gradual ecotones. The analyses we presented are useful tools 
for understanding the spatial structuring of communities due to both biotic and abi-
otic influences. If appropriate variables and sampling techniques are employed, 
these analyses can be used to gain an understanding of how abiotic and biotic influ-
ences act independently, and whether one influence tends to overshadow another. 
Partitioning results also offer a unique opportunity for landscape ecologists to iden-
tify variables that both structure communities and that are themselves spatially 
structured. Incorporating these results into landscape models can allow for quantita-
tive estimates about the relevance of landscape models for predicting species 
distributions.

 SYNTHESIS

Q16  Using the BCI dataset, design a research question that uses both spatial and 
environmental components. What variables and analyses would you test with 
this question? What are some potential unknowns and limitations in your 
analyses?

Q17  Consider a new and different dataset (either a potential hypothetical dataset or 
data from your own research) and answer Q16. Be sure to explain the type of 
data you might examine.
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Part V
Ecosystem Processes and Feedbacks in 

Social–Ecological Landscapes

With expanding interest in social-ecological systems comes a new set of challenges. 
Rather than considering only biotic or environmental factors, the interactions of 
people and nature become paramount. These exercises explore fundamental con-
cepts of connectivity and heterogeneity from the perspective of social-ecological 
landscapes, both in terrestrial and marine systems. Chapter 16 uses a straightfor-
ward spatial modelling approach in Excel to explore ways to incorporate landscape 
heterogeneity into ecosystem processes and services. The lab includes a well-loved 
“build-your-own-adventure” framework suitable for fun group projects. Chapter 17 
also takes a user-friendly approach to account for heterogeneity in tropical land-
scapes managed for their carbon storage potential. Using the lens of carbon account-
ing, the role of spatial heterogeneity at different scales is assessed, exemplifying 
contemporary challenges of ecosystem service management at landscape scales. 
Chapter 18 explores spatial resilience and regime shifts in a coral reef social- 
ecological landscape and demonstrates the universality of spatial resilience princi-
ples (such as feedbacks) in diverse landscape (or seascape) settings. Chapter 19 
examines tradeoffs among ecosystem services in an agricultural setting using a real-
istic modelling environment via web interface. Lastly, Chapter 20 offers a challeng-
ing perspective on social network connectivity using another marine-based example. 
Building on network themes from prior modules, social network connectivity is used 
to examine the flow of information related to fishing practices across a heteroge-
neous marine landscape. Taken together, this suite of exercises demonstrates the 
myriad ways in which landscape principles and tools are relevant to sustainability 
challenges in social-ecological landscapes throughout the world.
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Chapter 16
Modeling Spatial Dynamics of Ecosystem 
Processes and Services

Sarah E. Gergel and Tara Reed

OBJECTIVES

Understanding and predicting rates of ecosystem processes (e.g., soil erosion, nutri-
ent flux) across large heterogeneous landscapes is an enduring challenge in ecosys-
tem and landscape ecology and underpins the knowledge base for managing 
ecosystem services. Many current problems in ecosystem services management 
(e.g., maintenance of water quality and reduction of soil erosion) occur over broad 
spatial scales and across ecosystem boundaries and thus are influenced by landscape 
pattern (Syrbe and Walz 2012). When scaling up, ecosystem ecologists and water-
shed hydrologists have often used fine-scale plot experiments to infer rates of eco-
system processes at broader scales (Schindler 2012). This approach can present 
difficulties as the results of fine-scale studies may not reflect the heterogeneity evi-
dent in a larger area (McClain et al. 2003). Because collection of ecosystem data at 
broad scales is often difficult and costly and many ecosystem services are difficult 
to measure directly, modeling is a vital tool for addressing both basic and applied 
questions in this realm. In this lab, you will examine several fundamental issues of 
modeling landscape-level ecosystem processes and services in order to:

 1. Gain an appreciation for the need and challenges associated with examining eco-
system processes and associated ecosystem services at broad spatial scales;

 2. Learn to conceptualize how ecosystem dynamics can be modeled at the scale of 
a landscape;
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 3. Examine the implications of heterogeneity in rates of ecosystem processes; and
 4. Explore a variety of important spatial assumptions that may affect spatial assess-

ments of ecosystem services.

In Parts 1 and 2, we focus on the flux of phosphorus through an agricultural 
watershed using a very simple landscape model that enables one to easily incorpo-
rate and explore the impact of spatial heterogeneity on results. In Part 3, a series of 
synthesis questions helps you consider additional landscape ecological concepts 
important to understanding ecosystem services. Part 4 inspires you to build your 
own simple ecosystem service model using information provided for an urban land-
scape or even explore an entirely new situation. These exercises require a spread-
sheet ecosys.xls that will constitute your modeling environment which can be 
downloaded from book web site.

NOTE: Before you proceed, save an extra backup copy of the model that you DO 
NOT manipulate in case you accidentally irreversibly alter the model.

 INTRODUCTION

Eutrophication, or the enrichment of aquatic systems by excessive input of nutri-
ents, constitutes the major threat to water quality (Schindler 2012; Howarth and 
Paerl 2008). Phosphorus (P) is often the limiting nutrient to algal productivity in 
freshwater systems (Carpenter 2008; Schindler 2012). As a result, phosphorus 
enrichment can lead to toxic algal blooms and increases in hazardous protozoa 
(Schindler 1977) which can threaten a variety of ecosystem goods and services 
provided by watersheds, including fisheries production, drinking water supplies, 
and recreation (Carpenter et al. 1998). Nuisance algal blooms can also reduce habi-
tat diversity in shallow waters and deplete oxygen in bottom waters causing massive 
fish die-offs (Kaufman 1993). Additionally, the water may smell and taste foul and 
even cause skin irritation.

The most ubiquitous cause of eutrophication is non-point source pollution 
(USEPA 1990). Non-point source pollution refers to material entering aquatic sys-
tems from diffuse sources, such as runoff from agricultural fields; this is in contrast 
to point sources, such as a sewage treatment outflow pipe. Agricultural areas, par-
ticularly during storm events, can contribute significantly to non-point source phos-
phorus pollution (Omernick et al. 1991; Osborne and Wiley 1988; Correll et al. 
1999). Riparian buffer strips, bands of uncultivated vegetation adjacent to surface 
waters, slow phosphorus flow and can be used to mitigate fertilization of water bod-
ies in agricultural areas (Hoffmann et al. 2009). Wetlands also play a pivotal role in 
the biogeochemistry of landscapes (Verhoeven et al. 2006). Such types of 
 biogeochemical “hotspots” (sensu McClain et al. 2003) are essential to consider 
when understanding nutrient fluxes in landscapes.

In this lab, we present an ecosystem model of a hypothetical agricultural land-
scape surrounding a canal. The canal leads to a nearby lake used by the public for 
swimming and boating. The model represents the flow of phosphorus from fertil-
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ized agricultural fields, through the riparian buffer strip, and then into the canal 
during a large storm event. While the model presents a highly simplified version of 
riparian and P dynamics (Hoffmann et al. 2009), it provides a useful introduction to 
modeling ecosystem processes at the scale of a landscape. This model is designed 
to address questions such as: How much phosphorus can farmers apply to their 
fields without causing severe algal blooms? as well as At a given phosphorus appli-
cation level, how much phosphorus must be retained by the buffer strip to maintain 
low phosphorus levels in the canal?

 Part 1. Conceptualizing Landscape-Level Ecosystem Models: 
Phosphorus Loading in an Agricultural Landscape

Open the file ecosys.xls using Excel© spreadsheet software. The spreadsheet has 
been configured to represent a model agricultural landscape. The brown cells on the 
landscape represent farmed lands. After fertilizer is applied, some P flows downhill 
towards the canal, represented by blue cells. The green cells represent vegetated 
buffer strips. The number in each cell represents the total amount of P available to 
leave that cell, after within cell uptake and processing is taken into account. Each 
cell in the model landscape represents one hectare (ha), a 10,000-m2 area. The 
model approximates P flow across an agricultural landscape during a single storm 
event using the following simple parameters.

MODEL INPUT

Storm flow volume (m3/ha) [G6] is the total amount of stream flow in each cell in 
the canal for the duration of the storm event.

Buffer absorption capacity (kg/ha) [G10] represents the ability of the buffer strip 
to prevent the passage of P to the next cell, expressed as the total amount of P that 
could be retained by the buffer cell. Riparian buffers stop the flow of P in a variety 
of ways, including: uptake by plants, trapping of soil to which the phosphorus is 
bound, and soil adsorption and immobilization. Here, we combine all the mecha-
nisms into one equation for simplicity, representing the sum total of the buffer 
strips’ ability to prevent P from entering the canal. In our idealized landscape, val-
ues for this parameter range from 20 to 40 kg/ha (Peterjohn and Correll 1984; 
Osborne and Kovacic 1993).

Amount of phosphorus applied (kg/ha) [G15] refers to the amount of P in the fertil-
izer applied to each individual cell in the model. This model assumes that fertilizer is 
evenly applied throughout the field. In practice, the amount of P applied through fertil-
izer is highly variable, ranging from 50 to 200 kg/ha (Nowak et al. 1996).
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Transfer Coefficient [G12]. Our model assumes that farmers are not applying fertil-
izer in the rain and that 60% of the P in the cell runs off one pixel to another during a 
storm. This percentage is a simplification, in a real agricultural field the amount of P 
runoff would vary with vegetation, slope and especially rainfall intensity.

MODEL OUTPUT

Total phosphorus loading (kg) [G19] is the sum total of phosphorus entering the 
canal waters.

In-stream phosphorus concentration (mg/m3) [G22] is the resulting concentra-
tion of phosphorus in the canal surface water after the total phosphorus is thor-
oughly mixed throughout the water column. The total concentration was multiplied 
by 1,000,000 to convert kg to mg, shown as “=(G19*10^6)” in the equation. We 
then divided by the number of cells in the stream (75 cells) times storm flow to find 
the mg/m3, shown as “/(G6*75).” When the in-stream P concentration exceeds 
75 mg/m3 the system is at risk for algal blooms (Lathrop et al. 1998).

 Exploring the Model—How Does it Work?

Agricultural Fields. The brown cells on the spreadsheet represent farmed areas. 
These fields slope down to the stream running down the middle of the spreadsheet. 
The number in each cell represents the amount of phosphorus “left over” after 
uptake within the cell is accounted for; that is, the amount available to leave the cell 
and flow downhill to the next cell.

Select cell N4. Note the equation for the amount of P that leaves this cell. It is 
composed of two parts. The first part of the equation: “(M4 + $G$15)” calculates the 
amount of phosphorus entering the cell. M4 is the amount flowing in from the adja-
cent upstream cell. “$G$15” is the amount of fertilizer applied directly to the cell by 
the farmer (an input parameter you can alter). The sum of these numbers is the total 
amount that entered the cell. However, not all of this phosphorus flows to the adja-
cent downhill cell during a storm, as some is taken up by plants, adsorbed to soil, or 
leached into groundwater before it reaches cell O4. Thus, the 0.6 multiplier (or 
transfer coefficient), accounts for the fact that only 60% of the P that entered the cell 
can be washed into the next cell (i.e., 40% is taken up). This is an oversimplifica-
tion. In reality, soil cannot bind an infinite amount of P. The model also assumes that 
flow is unidirectional, downhill towards the canal. This is another simplification. 
Flow is likely to be much more complex in a natural landscape.

Buffer Strips. Next examine the buffer strips (the green areas) along the banks of 
the canal. Select cell T22.

Q1  Write the formula for cell T22 and explain in words what it means. (NOTE: These 
cells contain the Excel© equivalent of an “IF THEN” statement to prevent the 
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 program from printing negative numbers. These statements read: IF(x < y, print 
this if true, print this if false). For your answer, describe what the equation in the 
“print this if false” section means).

Drainage canal. Eventually, some P may make its way into the canal. Notice the 
differences in loading values for nearshore stream cells due to the variable width of 
the buffer at different locations.

Q2  Write the formula and explain in words how the output parameter in-stream 
phosphorus concentration is calculated.

Now, select cell V15. Enter a value of five into the cell. Repeat for cells V4, V10, V11, 
V12, and V22. Did the in-stream phosphorus concentration increase? By how much?

You just simulated several “cow patties” produced by a small herd of cows wading 
in the canal.

 Part 2. Heterogeneity in Ecosystem Processes

In this section, you will manipulate different components of the model to gain 
familiarity with how it can be used to explore alternative scenarios involving spatial 
variation in parameters and rates.

EXERCISE 1: Phosphorus Application Rates

As with all simulation models, important simplifying assumptions have been made 
for this model. Notice that all agricultural areas, for example, have the same amount 
of P applied to each cell. In reality, the amount applied to each cell could vary for 
several reasons. For example, a farmer might determine that a certain area of the 
field needs more fertilizer than other areas due to soil type. Also, different fertilizer 
application techniques might result in uneven P application throughout a watershed.

Q3  Consider that two farmers live on opposite sides of the creek and simulate the 
effect of different farming practices on the landscape. Implement this by chang-
ing the formulas in the cells, or by summing total P runoff for different sides of 
the landscape under alternative P application rates.
 (a)  Explain your modification.
 (b) What effect does this heterogeneity in fertilizer application have on the in-

stream phosphorus concentration?

Q4  Another difference in P movement could be due to differences in crop type. For 
example, hay production requires less P than corn (Newman 1997). Describe 
how you would change the model to incorporate differences in crop type. What 
equation would you change? How would the equation be changed?
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EXERCISE 2: Topographic Heterogeneity and Transfer Rates

Additional factors may cause heterogeneity in ecosystem processes (McClain et al. 
2003; Hoffmann et al. 2009). Consider the importance of heterogeneity in the rates 
of P movement across the landscape caused by topography. Erosion of P-containing 
sediment is often greater in areas of steep slopes, particularly during rain events.

Change the model to account for slope differences throughout the landscape. The 
easiest way to do this is by changing the amount of P leaving an individual cell, 
thereby simulating a reduction or increase in the processing of P in that cell. Right 
now the processing rate is 40% of the inputs (i.e., 60% exits the cell), but this might 
vary depending on whether the slope is gentle or steep.

Q5  Describe the changes you made, and the effects on P loading and concentration. 
What other factors might you expect to influence the movement of P (other than 
the transport across buffers)?

EXERCISE 3: Variation in Buffer Strip Width vs. Application Rates

You probably noticed earlier that the width of the buffer strip is important in deter-
mining P loading into the canal in this model. For the sake of managing water qual-
ity in the surrounding surface waters, a land manager or farmer may be interested in 
the relative importance of buffer strip width versus the amount of fertilizer applied 
in influencing total P inputs.

Q6  For the modeling scenario examined here, does it appear that individual farmer 
behavior (i.e., application rates) or buffer width is more important in maintain-
ing low concentrations of in-stream phosphorous? Answer in light of the con-
straints of the model and the range of parameters given.

Continue to manipulate the model, changing parameters at will. Be certain that you 
understand all the model parameters and how all model formulas were derived.

 Part 3. Synthesis of Spatial Approaches to Ecosystem Services

Many of the same challenges you examined for understanding ecosystem processes 
at broad scales (e.g., heterogeneity, scaling up, terrain) are equally important when 
considering ecosystem services. Ecosystem services refer to the benefits humans 
receive from nature (Daily 1997). A wide of variety of definitions of ecosystem ser-
vices exist and are vigorously debated (as in de Groot et al. 2002). Our goal in this 
section is to explore ways that spatial arrangement and spatial heterogeneity can 
impact ecosystem services (Syrbe and Walz 2012) at the scale of a broad landscape.

Each of the synthesis questions below is based around a key paper (or two) in the 
ecosystem services literature. Your instructor may wish to assign one question/one 
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paper to different teams to explore in detail. Alternatively, you may wish to explore 
these questions (more quickly, during class) as thought exercises.

 SYNTHESIS

 Q7  Consider the ecosystem processes you just modeled and which ones are related 
to ecosystem services. How would you distinguish a service vs. a process? Is 
this distinction important? Why or why not? (HINTS: see Haines-Young and 
Potschin 2010 or Keeler et al. 2012)

 Q8  Are there any ecosystem services for which spatial heterogeneity or spatial 
arrangement might NOT be important to consider? Explain your reasoning.

 Q9  The primary dynamic explored in the previous modeling exercise is that of 
trade-offs: whereby management for one ecosystem service can negatively 
impact the provisioning of another. Food production affecting freshwater provi-
sioning is a “classic” ES trade-off of great concern. Another type of interaction 
is a synergy whereby managing for one particular service helps augment another 
service. Using your knowledge of ecology, explain a few potential ecosystem 
service synergies (HINTS: see Bennett et al. 2009 or Qiu and Turner 2013).

Q10  Spatial characteristics of ecosystem services are important for a multitude of rea-
sons and can be another way to organize or classify ecosystem services. Consider 
Costanza (2008) (reproduced in Table 16.1 here) which outlines five spatial char-
acteristics potentially important to consider. Which of these five categories were 
already represented in the ecosys.xls model? Consider a spatial characteristic 
NOT represented in the model and explain how you might incorporate it.

Q11  Another important spatial consideration for ecosystem services is that of 
access which is influenced not only by where in the landscape services are 
produced but also by regulations, roads, as well as characteristics, abilities, 
and preferences of people who may wish to access various services. Some 
example ES might include bird-watching or harvesting wild foods (fish, ber-
ries, mushrooms, wild rice). Consider how one would model an ecosystem 
service with access considerations incorporated. Explain the type of spatial 
information you might incorporate and how you would link the new informa-
tion to ecosystem processes, services, and access.

Q12  The long-term dynamics of ecosystems and the impact of landscape history 
have been of interest to landscape ecology for some time. It is appreciated that 
ignoring landscape history and/or baseline conditions can be problematic for 
truly understanding ecosystems. How might ignoring landscape history and 
prior conditions impact ecosystem services? How might incorporating land-
scape history improve our understanding of ES? (HINTS: see Tomscha and 
Gergel 2016; Sutherland et al. 2016; Renard et al. 2015).

16 Modeling Spatial Dynamics of Ecosystem Processes and Services



282

 Part 4. Constructing Your Own Model

Now that you have been introduced to the fundamentals of a simple landscape 
model and explored its parameters and possibilities, you have the basic tools to 
design your own landscape model. Next, you will use the same basic concept of 
combining cells of landscape elements (in a spreadsheet) to build your own 
landscape- level ecosystem model. You might also wish to incorporate your spatial 
understanding of ecosystem services (from Part 3) into your next model.

(NOTE: At this point, we switch our focus to urban landscapes, but those interested in 
continuing with ecosystem services in an agricultural setting, but with a more sophis-
ticated and realistic modeling environment, are encouraged to explore Chapter 19.)

EXERCISE 4: Basic Modeling Version

Your task is to build a model to answer a specific question regarding the dynamics 
of P runoff in an urban landscape. Your urban environment is a city, such as Chicago 
or Seattle. In Excel©, you will model a city using a set of cells representing different 
elements of the urban environment (Table 16.2). Each element has its own level of 
phosphorus runoff and/or absorption. Using your imagination, create a city that 

Table 16.1 Categorization of ecosystem services based on spatial characteristics (adapted from 
Costanza 2008)

Spatial characteristics Ecosystem service

Global (independent of proximity) Climate regulation

Carbon sequestration (NEP)

Carbon storage

Cultural/existence value

Local (depends on proximity) Disturbance regulation/storm protection

Waste treatment

Pollination

Biological control

Habitat/refugia

Directional flow (from point of production to point 
of use)

Water regulation/flood protection

Water supply

Sediment regulation/erosion control

Nutrient regulation

In situ (point of use) Soil formation

Food production/non-timber forest 
products

Raw materials

User movement related (flow of people to unique 
natural features)

Genetic resources

Recreation potential

Cultural/aesthetic
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contains at least a small proportion of all of the provided urban elements. Your city 
is adjacent to a small river which receives urban storm-water runoff.

Design and then manipulate your model specifically to answer at least one of the 
following questions:
 1. City parks tend to be sinks for phosphorus although they may be slightly fertil-

ized. What proportion of the city must be occupied by parks to maintain in-
stream P levels below 75 mg/m3? How does the spatial arrangement of the parks 
affect the proportion of the city that parks must occupy to maintain in-stream P 
levels below 75 mg/m3?

 2. What proportion of the stream must be bordered by runoff treatment wetlands in 
order to reduce in-stream P concentrations by 10%? By 50%? To eliminate phos-
phorus input altogether? What proportion of the stream must be bordered by 
treatment wetlands to maintain in-stream P levels below 75 mg/m3?

 3. Keeping the total area occupied by housing constant, what effect does varying 
the proportions of residential housing in apartments vs. homes (e.g., 30/70, 
50/50, 90/10) have on P runoff to the stream? What proportions would you rec-
ommend to maintain in-stream P levels below 75 mg/m3?

 4. Consider your urban landscape from the perspective of one (or more) terrestrial 
ecosystem services provided by urban trees and vegetation (Escobedo et al. 
2011). For example, urban parks are important for a variety of recreational pur-
poses, greenspace has been linked to human health outcomes and well-being, 
and urban vegetation affects a variety of wildlife species in positive and negative 
ways. Redesign the provided urban model to address one or more of these ter-
restrial ecosystem services.

Table 16.2 Parameters for a simple spatial model of phosphorus flux through an urban watershed

Land cover type

Amount of 
phosphorus produced 
(g/20 m2)

Phosphorus 
absorption capacity 
(g/20 m2)

Simplified transfer 
coefficient (proportion)

Lawn (heavily 
fertilized)

30 – 0.60

Lawn (slightly 
fertilized)

4 – 0.60

City park (slightly 
fertilized)

4 – 0.60

Residential homes 70 – 1

Apartments 30 – 1

Commercial district 20 – 1

Industrial district 40 – 1

Construction site 200 – 1

Road 0 0 1

Runoff treatment 
wetland

– 40 0.60

Forest – 50 0.60
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Model Parameters. You are provided with the following parameter estimates 
(Table 16.2) and in the spreadsheet. Notice, however, that the resolution of the run-
off and absorption estimates is different than for the model you examined in Parts 1 
and 2. You will probably want to adjust the scale of your model from the 1-ha reso-
lution used in the agricultural model as city lot sizes are rarely that large. Here, we 
have provided the model parameters in units of g/20 m2. For an urban landscape, 
20 m2 cells roughly approximate the minimum size (or spatial grain) of the land-
scape elements you will model. Building on this cell size, you could combine 1 resi-
dential housing pixel with 1 lawn pixel to represent one residence.

To incorporate both urban and agricultural areas in your landscape you can use 
values from Part 1 but will need to do some conversions (remember 1 ha = 10,000 m2). 
You may adjust the grain size further as appropriate for your model and the ques-
tions you are trying to address, but be sure to choose an appropriate grain size for 
your model, and adjust the runoff and absorption capacity values accordingly. 
Lastly, you can assume that all processes that contribute to phosphorus runoff and/
or absorption have been taken into account with the parameters given.

Transfer coefficients. In addition to the absorption capacity of a land cover type, the 
amount of P transferred to the next cell may also be diminished by a transfer coef-
ficient. This reflects that some land-cover types are less permeable to runoff than oth-
ers such that more runoff moves from one cell to the next. In the agricultural model, 
we used a transfer coefficient of 0.6, meaning that only 60% of the P in a cell was 
available to move out to the next cell. In this section, only wetland areas and forests 
have values for absorption capacity. We have, however, included transfer coefficients 
to account for soil permeability in lawns and parks, which we examine next.

Building Your Model. Switch to the second page of the spreadsheet file by clicking 
on the tab labeled Urban Landscape at the bottom of the spreadsheet. Again, here 
are all the elements with which to build your urban landscape, identical to those in 
Table 16.2. Click on the cells in the Equations column to view the equations, which 
incorporate transfer coefficients in some cases, for different land-cover types. The 
cells in the example column can be cut and pasted into the spreadsheet to build your 
urban landscape.

(NOTE: These equations represent P flow only from left to right. Unless you want 
to rewrite some of the equations to represent flow in the opposite direction, place 
your river, stream, or canal on the right-hand boundary of your landscape. Be sure 
to examine each cell to see which other cells are referenced).

Construct your model in the same general form as the model in Part 1. For simplic-
ity, you may assume that flow is unidirectional, downhill towards the canal. Thus, as 
before, the phosphorus values in each cell represent the amount leaving that cell. This 
includes the runoff entering from the adjacent upstream cell plus or minus the runoff/
absorption estimate for that land cover type, and in some cases, a transfer coefficient. 
Remember that the number in each cell should represent the total phosphorus avail-
able to leave the cell, after any within cell uptake or processing or reduction due to 
the transfer coefficient. The concentration in the water can be calculated by the 
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amount of P flowing into the stream cell multiplied by the total volume of water that 
flowed through the stream during the storm event. When your model construction and 
manipulation are finished, complete the write-up portion of the lab.

EXERCISE 5: Advanced Modeling Version

Your task is to model any landscape-level ecosystem process of your choosing. You 
will use the basic concept of landscape element blocks in Excel©, but you are free to 
design those elements using your own knowledge, experience, and imagination. As 
in the basic version (above), your model must be designed to answer a clearly 
defined question (or set of related questions), but you will choose the question your-
self. Be sure that you have a clear understanding of the underlying assumptions of 
your model throughout the building process, and be able to state those assumptions 
clearly.

Be sure to explicitly determine the appropriate grain size of your model. Also 
consider whether the values in each cell represent amount entering or leaving a 
given cell. If you have more than 1 day to complete this assignment, we recommend 
that you spend some time researching the literature and use realistic parameters to 
construct your model. Keep in mind that you must be able to manipulate your model 
to address your initial question. When the model and manipulation are finished, 
complete the write-up that follows.

 Modeling Hints

 1. Consider using the Format, then Cell, then Patterns commands on your spread-
sheet’s pull-down menu to assign different colors identifying different landscape 
elements.

 2. Learn how to use the $ symbol when cutting and pasting. For example, if you 
wanted to copy a formula “= $F$6 + 5” from one cell to a cell in the next column 
over, the $F preserves the column reference, while $6 preserves the row refer-
ence; thus, the formula would remain = $F$6 + 5 when copied and pasted. 
Otherwise, the formula typed as “= F6 + 5” becomes = G6 + 5 when copied one 
cell to the right or becomes = F7 + 5 when copied to the cell below.

 WRITE-UP

Include the following sections in your report:

 1. Introduction
 (a) State the question(s) your model addresses.
 (b) Provide some context for why this question is important.
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 2. Description of Model
 (a) State the underlying assumptions of your model.
 (b) Describe your model. Define the spatial and temporal scale of your model. 

(For the advanced version, list and explain all model parameters).

 3. Simulations and Results
 (a) Clearly describe each “simulation experiment” with the model and summa-

rize the results.
 (b) Answer the question(s) your model was designed to address.

 4. Discussion
 (a) What are the implications of heterogeneity in rates of ecosystem processes 

in your model scenario?
 (b) Within the realm of the ecosystem process that you have modeled, what are 

the limitations of your model? Why?
 (c) What additions/modifications would you make to your model to address the 

limitations listed above?
 (d) When would considering the spatial arrangement of landscape elements or 

the role of landscape heterogeneity not matter to your results?
 (e) When would sampling at broad scales not be important?
 (f) How would a longer temporal scale effect your results?

 5. Literature Cited (not included in page limits)
 6. Appendix (not included in page limits)

 (a) If required, a copy of the answers to the exploratory questions posed in Parts 
1 and 2 of this chapter

 (b) Print out of the Excel© file containing YOUR model

Your instructor will determine page lengths depending on the amount of time you 
have to complete your assignment. Consider giving oral presentations of your results.
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Chapter 17
Heterogeneity in Ecosystem Services:  
Multi- Scale Carbon Management  
in Tropical Forest Landscapes

Kathryn R. Kirby, Jeanine M. Rhemtulla, and Sarah E. Gergel

OBJECTIVES

Landscape management is increasingly focused on trade-offs among various eco-
system services. For example, while clearing forests may produce timber and pro-
vide land for agriculture, it also releases significant amounts of carbon to the 
atmosphere, influencing the global climate system. Evaluating the tradeoffs among 
ecosystem services is made difficult by the inherent heterogeneity of social–eco-
logical systems at many levels of ecological (and social) organization. For example, 
the provisioning of ecosystem services may change with the size of organisms, the 
species composition of communities, and with variation in landscape pattern 
through time. In this chapter, we introduce common methods for estimating the 
amount of carbon stored in forests and explore the implications of spatial and tem-
poral heterogeneity for carbon management at the landscape level. Assuming little 
prior knowledge of these issues, these exercises will enable students to:

 1. Estimate standing stocks of carbon using methods appropriate to different spatial 
scales;

 2. Explore the social–ecological implications of the relationship between tree sizes, 
wood density, and carbon stocks;

 3. Quantitatively evaluate the relative impact of forest loss versus forest fragmenta-
tion on landscape-level carbon storage; and

 4. Contrast the impact of alternative management regimes on total carbon stocks as 
well as flows through time.
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In Part 1, we introduce basic methods appropriate for carbon accounting at the 
level of individual trees and forest stands. In Part 2, we explore why variation in 
landscape composition as well as landscape arrangement are both important to con-
sider. Lastly, in Part 3, students use a simple landscape simulation model (in Excel) 
to explore how management activities may impact carbon storage in forests, includ-
ing a consideration of nonlinearities in the amount of carbon stored over space and 
time. The only material needed for the exercise is access to a computer and the 
spreadsheet entitled carbon.xlsx, downloadable from the book webpage. Your 
instructor may wish to assign Part 1 as a “pre-class” assignment (to be completed 
prior to coming to class) in order to save classroom time for Parts 2 and 3.

 Part 1. Estimating Carbon Stocks: From Trees  
to Forest Stands

Forests are “living storage units” for carbon. As plants grow, they sequester atmospheric 
carbon (CO2) through photosynthesis. The sequestered carbon is incorporated into plant 
structures (e.g., stems and foliage) so that approximately 50% of the biomass, or dry 
weight, of plants is carbon. This stored carbon (referred to as carbon stocks) is only 
released back into the atmosphere after plants (or their parts) break down, usually 
through decomposition or sometimes fire. The flux of carbon through forests is thus 
determined by the relative rates of photosynthesis (sequestration) and decomposition 
(emissions). Deforestation and logging accelerate the release of carbon stored in vegeta-
tion back into the atmosphere through tree death and decomposition. Because elevated 
levels of atmospheric carbon are driving global climate change, scientists are increas-
ingly interested in quantifying the impacts of forest management on forest carbon.

One method commonly used to quantify forest carbon storage combines models 
of tree allometry with nondestructive measurements of trees (e.g., measurements 
collected as part of standard forest inventories). For example, allometric models 
have been developed that relate tree diameter to total tree biomass. Tree diameter is 
typically measured during forest inventories as DBH, or diameter-at-breast-height, 
so-called because it is measured at a standard height of 130 cm above the ground. 
Applying a DBH-biomass allometric model to forest inventory data therefore 
 produces an estimate of biomass for the inventoried forest. This can be transformed 
into an estimate of carbon based on the relationship between biomass and carbon (on 
average, 47% of the biomass of tropical trees is carbon) (Martin and Thomas 2011).

EXERCISE 1: Predicting Carbon Stocks Using Diameter at Breast Height 
(DBH) for a Common Neotropical Tree Species

Anacardium excelsum is a rather conspicuous tree in the forests of Panama. It is 
known locally as “espavé,” from the Spanish phrase “es para ver” (“is to see”), a 
reference to its tall height and utility as a look-out point when climbed. A. excelsum 
is harvested for timber, but is also used to make furniture, boats, and dugout canoes.
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Here, you will estimate the carbon stored in Anacardium excelsum trees of dif-
ferent diameters using an allometric model that relates tree DBH to biomass (Chave 
et al. 2005).

• Open the workbook carbon.xlsx, and go to the worksheet Tree.
• The allometric model of Chave et al. (2005) has been entered for you in the 

spreadsheet as an Excel function [cell C12]. Apply this function to A. excelsum 
trees with DBH ranging from 10–150 cm by adding an “=” sign in front of the 
function, then copying and pasting into the cells below.

• Multiply the resulting biomass estimates by 0.47 to convert biomass to carbon 
[cells D12 to D26].

• Plot carbon vs. DBH.

Q1  What do you notice about the relationship between carbon stored and tree DBH 
(diameter at breast height)?

Q2  Considering this relationship, what type of tree or stand would be most valuable 
to managers aiming to maximize standing carbon stocks?

Q3  List some ecosystem services other than carbon storage provided by forests. 
Include at least one example each of services with ecological, economic as well 
as cultural value. Are any of these other ecosystem services dependent on indi-
vidual trees? Do you expect these services to vary with the size and species of 
individual trees? Explain why or why not? (HINT: see Ellison et al. 2005; 
Manning et al. 2006 or Salick et al. 2007).

EXERCISE 2: Contrast the Carbon Stocks of a Hardwood and Softwood 
Tree Species

Wood density varies widely among tree species and impacts carbon storage by 
determining how much carbon is stored per unit of tree volume. The general allo-
metric model you used in Exercise 1 can be applied to all species of tropical trees 
using average values for wood density; however, using species-specific wood den-
sity values greatly improves accuracy (Chave et al. 2005). Here, you will contrast 
carbon storage by two species of trees native to Central America. The first, Dalbergia 
retusa (“cocobolo” in Spanish, “rosewood” in English), is a hardwood species that 
is used by artisans for fine wood carving; it has a wood density of 0.86 g cm−3. The 
second, Ochroma pyramidale (“balsa”) is a light wood used locally to raft down 
rivers; it has a wood density of 0.16 g cm−3.

• Go to the worksheet Tree2.
• The allometric model of Chave et al. (2005) has been entered for you in the 

spreadsheet as an Excel function. Apply this function to D. retusa and O. pyrami-
dale trees with DBH ranging from 10–110 cm (add a “=” sign in front of the 
functions in cells C14 and E14, then copy and paste into the rest of the cells in 
the column).
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• Multiply the resulting biomass estimates by 0.47 to convert biomass to carbon 
[cells D14–D24 and F14–F24].

Q4  Contrast the carbon stocks of a D. retusa and O. pyramidale individual of the 
same diameter. What is the difference in carbon storage among the two indi-
viduals? At what DBH would an O. pyramidale tree store the same carbon as a 
30 cm DBH D. retusa tree?

Q5  Can you think of other groups of organisms in which the efficiency of ecosys-
tem service provisioning differs among species? (HINT: for an example related 
to pollination, see Brittain et al. 2013).

EXERCISE 3: Scaling From Individual Trees to a Forest Plot

Barro Colorado Island, Panama, has been a site of intensive ecological research 
since 1923. Today, its lowland moist tropical forests are some of the best studied in 
the world. Beginning in 1982, and then every 5 years since 1985, a detailed inven-
tory has been conducted of 50 ha of mature tropical forest on the island (Condit 
1998; Hubbell et al. 1999, 2005). As part of the inventory, the DBH and species 
name of each tree exceeding 10 cm DBH are recorded. Here, you will work with 
inventory data from a one-hectare subplot on Barro Colorado Island, in which 416 
individual trees belonging to 82 species were measured. (NOTE: Data from this site 
were also used for the exercises in Chapter 15 to explore spatial statistics). The data 
are contained in the worksheet Plot.

• The worksheet Plot contains a list of all of the individuals measured in the 1 ha 
plot, including their ID number, species name, wood density, and DBH.

• Apply the allometric model of Chave et al. (2005) to all the trees measured in the 
plot (the function has been entered for you in cell F2; copy it to the cells below). 
(NOTE: biomass is now being calculated in Mg (megagrams or metric tons) 
rather than kg).

• Convert biomass to carbon by multiplying by 0.47.
• Sum the carbon stored in all the trees in the 1 ha plot. Record your answer.

EXERCISE 4: Impact of Selective Logging on Forest Carbon Storage

Selective logging is typical in the tropics and differs from the clear-cut harvesting 
approach common in temperate coniferous forests. Trees in less diverse temperate 
conifer forests, which tend to be dominated by one or a few species, may have the 
same end-use and thus are easily processed at the same mill. However, the diverse 
panoply of tree species typically encountered in tropical forests may have a wide 
variety of end-uses that require different processing technologies. As a result, tropical 
loggers will typically remove only a subset of the tree species present, often targeting 
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hardwood species that reach the largest diameters when mature. This form of “high-
grading” can have important implications for ecosystem services. Here, you will 
compare the impacts on plot-level carbon stocks of two approaches to logging.

First, simulate selective logging of the 10% of individuals with the largest 
diameters.
• Using the worksheet Plot, sort the list of trees by DBH.
• Select the 42 trees with the largest diameters at breast height, and delete them (as 

though you were harvesting 10% of the largest trees in the plot).
• Record the new carbon stock total for the plot.

Second, simulate logging of a random selection of 10% of individuals in the 1 ha 
plot (as though you were clear-cutting 10% of individuals in the forest stand, with-
out regard to species identity or tree size).
• Start again with the original plot of trees. (You can either undo your changes to 

make sure the trees you deleted are back in the plot or download the file again 
and save as another name).

• In column H in the worksheet Plot, use Excel’s random number generator 
“=RAND()” to generate a random number for each tree in the plot.

• Select the column, Copy it, then go to Paste Special > Paste Values (this ensures 
that the random numbers will not be recalculated every time you sort the 
worksheet).

• Sort the worksheet by the random number column.
• Select the first 42 trees for simulated harvest (i.e., those with the highest random 

numbers). Delete these trees, thereby removing a random selection of 10% of 
trees from the plot.

• Record the new carbon stock total for the plot.

Q6  Determine the relative impact of removing 10% of the largest diameter trees as 
opposed to removing 10% of trees via random selection on total carbon storage. 
Does removal of 10% of trees reduce total carbon storage by 10%?

Q7  Which natural disturbances remove random vs. large diameter trees? How does 
this compare to anthropogenic disturbances? Are there differences in tropical 
versus temperate forests?

 OPTIONAL: Field Exercise

A field exercise has been developed building on Part 1 that provides an opportunity 
for students to estimate carbon stocks using their own forest sampling data. For the 
exercise, students establish local sample plots and collect DBH measurements and 
species names for trees in the plots. As in Exercise 3, these data are converted to 
estimates of carbon stocks per unit area, allowing students to compare carbon stocks 
among sample plots and/or land-cover and forest types. Please see Powers and 
Velásquez-Runk (2016) which is part of the online supplementary materials for this 
book chapter.
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 Part 2. Impact of Forest Loss and Forest Fragmentation 
on Landscape-Level Carbon Stocks

EXERCISE 5: Relationships Between Land Cover and Carbon Stocks

The relationship between biomass and carbon stocks (as in Part 1) means that land-
cover types with more vegetation—and, in particular, with more large trees—store 
more carbon above ground. The following table presents the average above-ground 
carbon stocks for one hectare of six common land- cover types in eastern Panama. 
Keep in mind that these values are averages: initially, the carbon stocks of fallow 
areas will be lower than the average presented in Table 17.1, and eventually they 
will surpass them. Later, in Part 3, we will address these assumptions by incorporat-
ing growth curves into a temporally explicit model.

Q8  Briefly consider the impacts of transitions among the different classes (e.g., 
converting mature forest to pasture or allowing pasture to regenerate as second-
ary forest). Which land-cover transitions would result in the greatest loss of 
carbon stocks (i.e., emissions of carbon to the atmosphere)? Which result in the 
greatest increase in carbon stocks (i.e., sequestration of atmospheric carbon)?
(NOTE: Some of the changes occur over very short time periods whereas others 
occur over many years.)

Q9  Just as there is variation in carbon storage among tree species (Part 1), there is 
also variation in carbon storage among sites. For example, forests on rich soils 
may reach greater statures and therefore store more carbon then nearby forests 
on poor soils. How could this be taken into account by researchers aiming to 
provide general values for forest carbon for an entire region? (HINT: Pelletier 

Table 17.1 Mean above-ground carbon stocks in 1 ha of six common land-cover classes in eastern 
Panama (based on Pelletier et al. 2012).

Class Description of Forest type
Above-ground carbon 
(Mg C ha−1)

Mature forest Old-growth and mature secondary forest 140

Old secondary 
forest

Secondary forest that is approx. 40 years old 129

Young secondary 
forest

Secondary forest that is approx. 10 years old 48

Fruit-tree 
agroforest

Orchard dominated by fruit trees, sometimes also 
containing fuelwood, timber, fiber, and medicinal 
tree species

50

Fallow Crop field or pasture recently abandoned 
(regrowing forest less than 5 years old)

36

Pasture or annual 
crop field

Land used for growing annual crops or for cattle 
grazing

4.2

K.R. Kirby et al.



295

et al. 2012 explore this problem and show that it can have important impacts on 
landscape-level carbon estimates).

EXERCISE 6: Exploring the Effects of Forest Loss and Forest 
Fragmentation on Carbon Stocks

The total carbon stored in a landscape is affected not only by the amount of each 
land-cover type present, but also by the configuration of those land-cover types. 
More fragmented forests have more edges, which are exposed to more wind and 
other disturbance than are forest interiors. As a result, forest edges typically store 
less carbon than forest interiors (Laurance et al. 1998). The following exercise 
explores the impacts of these two factors (forest loss and forest fragmentation) on 
landscape-level carbon stocks.

You will examine three hypothetical landscapes for the exercise (Figure 17.1). In 
these landscapes, each pixel represents one hectare (100 × 100 m2). All three land-
scapes contain the same proportion of mature forest and pasture (0.50 each); how-
ever, the degree of forest fragmentation increases from left to right. As a result, the 
number of forest edge pixels also increases from left to right.

• In the carbon.xlsx workbook, go to the Landscape calculations worksheet. 
Notice that the total number of pasture, mature forest edge, and mature forest 
interior pixels in each of the three landscapes of Figure 17.1 has been tallied for 
you (cell B8 and below).

Figure 17.1 Three landscapes with identical proportions of pasture and mature forest but differ-
ing levels of forest fragmentation. Fragmentation creates forest edge (grey pixels), with different 
environmental conditions producing different ecosystem services than interior forest (black pix-
els). (NOTE: The landscapes were created using QRule neutral landscape software introduced in 
Chapter 6—with levels of clumping set at H = 0.9, H = 0.5, and H = 0.1. You may wish to experi-
ment with other configurations, and/or introduce additional land-cover types to these landscapes)
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• Enter the above-ground carbon estimates for mature forest (interior) and pasture 
from Table 17.1 into the spreadsheet (cell C8 and below), then multiply these 
values by the number of hectares of each land-cover type (column B) to calculate 
total carbon for these land-cover categories.

• To incorporate edge effects, assume that mature forest edges store 10% less car-
bon than mature forest interior. Reduce the mature forest carbon value in 
Table 17.1 by 10%, and use this as an estimate of mature forest edge carbon 
stocks [cells C10, C16, C22].

• For each landscape, sum across land-cover types to calculate total landscape- 
level carbon stocks in cells D11, D17, and D23.

Q10  What is the effect of forest fragmentation on landscape-level carbon stocks? 
How does the effect of fragmentation on carbon stocks compare to net losses of 
forest? (HINT: try recalculating landscape-level carbon stocks after “converting” 
an additional proportion of forest pixels to pasture pixels in each landscape).

Q11  Determine the sensitivity of your answer to the previous question to your 
assumptions regarding the carbon stocks of edges. Assume that forest edges 
lose carbon not just because of natural disturbances along edges (e.g., increased 
tree death due to wind damage) but also because of increases in human activi-
ties, such as fuel wood collection. Recalculate landscape-level carbon stocks 
assuming a reduction of 40% of carbon in edge forest relative to interior for-
est. Now what is the effect of fragmentation on landscape-level carbon stocks?

Q12  Consider the variety of ecological and abiotic differences between forest 
edges and forest patch interiors. Can you think of other ecosystem services 
that might differ between forest patch edges and interiors? Explain the differ-
ences you might expect, and why. (HINT: see Laurance et al. 2011).

 Part 3. Impacts of Alternative Forest Management Regimes 
on Carbon Stocks and Fluxes Through Time

So far you have explored the effects of tree size and land-cover types on carbon 
stocks at a single point in time. However, trees sequester carbon as they grow and 
emit it when they die and decompose—these are fluxes or flows of carbon through 
time. You have already seen that large trees store disproportionately more carbon, 
but perhaps counterintuitively, younger trees actually have higher rates of carbon 
sequestration (because they are growing quickly). This has led some managers to 
argue that the best way to use forests to mitigate climate change is to clear mature 
forests and replace them with young, fast growing forests that sequester a lot of 
carbon. The following exercise tests this idea over a one-hundred year time period 
for a hypothetical tropical landscape. It uses the model contained in the StockFlux 
worksheet in the carbon.xlsx Excel workbook.
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EXERCISE 7: Stocks vs. Flux in a Forest Landscape Through Time

In this exercise, you will compare how different forest management regimes change 
the stocks and fluxes of carbon in a forest landscape through time. The StockFlux 
worksheet contains a series of tables that track changes in stand age, carbon stocks, 
and carbon flux through time in response to forest logging and regrowth. The land-
scape is 10,000 ha, and the model tracks forest growth in 10-year age cohorts every 
10 years over a 100-year time period. Rather than estimate carbon based on the 
DBH of individual trees in a stand, the model uses a carbon growth curve based on 
stand age. This is less accurate than estimating carbon using DBH, but is more effi-
cient for estimating carbon over large areas.

• Open the StockFlux worksheet.
• Examine Excel.Table 1 embedded within the worksheet, which shows how the 

forest stand age distribution of the landscape changes through time. 

(NOTE: At the beginning of the simulation, the entire landscape (10,000 ha) is old-
growth (100+ years old) [cell K6], and remains this way in the absence of logging).

• Examine the graphs at the top of the sheet showing carbon stocks and fluxes over 
time.

Q13  Assuming no forest logging, how much above-ground carbon is stored in trees 
in the 10,000 ha of old-growth forest? How much carbon is sequestered and 
emitted through time? (HINT: Answers to this question also appear in embed-
ded Excel.Table 3 (carbon sequestered) and Excel. Table 4 (carbon emitted) 
within the spreadsheet).

You can simulate logging in the model by entering the number of hectares to cut 
each decade in cell B2. Each decade, the oldest available forests will be cut, and the 
table will track the fate of these cut forests (which move into the youngest stand age 
in the following time period) and the growth of uncut forests for each 10-year 
period. The resulting changes in above-ground tree carbon through time are shown 
in Excel.Table 2 (change in carbon stocks), Excel.Table 3 (carbon sequestered), 
and Excel.Table 4 (carbon emitted) within the worksheet.

• Log 1% of the landscape each year (10%/decade) by entering “1000” in cell B2.

Q14  Describe what happens to the forest stand age distribution and carbon stocks 
and fluxes under a 10%/decade logging regime. After 100 years, what is the 
mean stand age [cell M16], the landscape-level carbon stocks [cell L31], and 
cumulative carbon sequestered [M44] and emitted [M57]? How do these dif-
fer from the unlogged forest?

• Explore the impact of alternative forest management regimes on landscape-level 
carbon stocks/flux. Open the sheet Landscape balance, which has been linked 
to the sheet StockFlux used in the previous exercises.

• Simulate different management regimes by systematically varying the area of 
forest cut per decade [cell B2 in worksheet StockFlux]. Record the impacts of 
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each simulation on: mean stand age, total carbon stocks, and cumulative carbon 
sequestration and emission using the table provided in worksheet Landscape 
balance (see worksheet for further instructions).

• Create two graphs: (1) total carbon stock (Y-axis) vs. mean stand age (X-axis), 
and (2) carbon sequestered and carbon emitted (both on the Y-axis) vs. mean 
stand age (X-axis)

Q15  How do carbon stocks and fluxes vary with stand age? Are the relationships 
linear? What type of forest has the highest carbon stocks? Highest carbon flux?

• Next, calculate the carbon balance for the landscape after 100 years of each 
simulated management regime in column G of the table in the Landscape 
Balance worksheet.

Q16  It has been suggested that replacing old-growth forest with young quickly 
growing forests would be a good way to help mitigate climate change. Based 
on your simulation results, do you agree?

In the simple model that you used in this exercise, old-growth forests reach a 
carbon equilibrium after 80 years of age (i.e., carbon storage ceases to increase). 
Recent research (e.g., Luyssaert et al. 2008) suggests that old-growth forests may in 
fact continue to accumulate carbon as they age. The model also assumes that when 
trees are cut, their entire carbon stocks are emitted. This may not be the case if, for 
example, timber is used for construction and so does not immediately decay.

Q17  If these two primary model assumptions discussed above are not true, would 
it change your answer to Q16? How? (HINT: see Harmon et al. 1990).

 CONCLUSIONS

Managing forests for multiple ecosystem services requires a careful consideration of 
the heterogeneity of these services across scales and through space and time. These 
challenges become especially obvious when trying to implement policies to enhance 
ecosystem service provisioning that require reliable measurements of the services. 
For example, international climate negotiations over the past decades have included 
discussions on financial incentives that would either reduce emissions from defores-
tation and forest degradation (e.g., the United Nation’s “REDD” programme), or 
increase reforestation and afforestation (e.g., the Kyoto Protocol’s Clean Development 
Mechanism). But questions such as how best to measure the gains in carbon stocks, 
how to ensure that deforestation isn’t simply shifted in space, and what historical 
time period to use as a reference point, continue to be challenging. With thoughtful 
management, forests can play an important role in climate mitigation while contrib-
uting to local livelihoods and providing other ecosystem services.
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Chapter 18
Regime Shifts and Spatial Resilience 
in a Coral Reef Seascape

Jennifer C. Selgrath, Garry D. Peterson, Matilda Thyresson, 
Magnus Nyström, and Sarah E. Gergel

OBJECTIVES

Ecosystems are shaped by natural processes such as predator–prey interactions and 
climate, as well as by human activities such as harvesting and pollution. Resilient 
ecosystems are able to absorb disturbances, but chronic stressors may reduce the 
capacity of an ecosystem to cope with change (Nyström et al. 2000). The ability of 
ecosystems to absorb disturbance and at the same time maintain their structure, 
processes, and function is known as resilience (sensu Holling 1973). Accumulated 
evidence from many systems (e.g., coral reefs, forests, rangelands, and shallow 
lakes) suggests that when pushed past a threshold (i.e., beyond their resilience), 
ecosystems can undergo a regime shift to an alternative state (Walker and Salt 2006; 
Knowlton 1992; Dublin et al. 1990; Scheffer et al. 1993; Peterson 2011). From an 
anthropocentric perspective these alternative states may be less desirable than the 
initial state depending on the ecosystem goods and services they produce (Moberg 
and  Folke 1999). Strong feedbacks in the alternate state may also make recovery to 
the original state difficult, even after the original stressors are removed (Scheffer 
et al. 2001; Nyström et al. 2012). Human dimensions such as opportunity and 
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governance also comprise an important aspect of resilience because they influence 
how sustainably resources are used (Ostrom 2009; Cinner 2009), thereby shifting 
the resilience threshold. The objectives of this lab are to:

 1. Investigate how the ecological dynamics of a system can promote resilience or 
lead to regime shifts;

 2. Explore how interactions between social and ecological processes can influence 
the state of a system; and

 3. Use simple spatial modeling to investigate spatial aspects of resilience and to 
examine how resilience is influenced by social–ecological processes operating at 
different scales.

In this lab, you will investigate how social and ecological factors influence resil-
ience across scales using simple nested models and maps within a spreadsheet 
(reef.xlsx) which can be found on the book web site. First, you will explore a model 
of a patch coral reef. This model will allow you to understand the ecological feed-
backs that maintain reefs in a healthy coral-dominated state, in contrast to a 
degraded, algae-dominated state (Nyström et al. 2012). You will also learn how 
fishing practices affect reef resilience. Secondly, you will work with a spatial model 
that expands the patch reef dynamics to a series of linked reefs. This helps us under-
stand how the spatial adjacency of multiple reefs influences resilience and spatial 
resilience (Nyström and Folke 2001). Third, you will explore how social and eco-
logical factors across multiple scales interact to influence the resilience of the sea-
scape. The lab concludes with a series of synthesis questions which allow for 
opportunity to think about conservation implications of the lab and spatial resil-
ience in other systems.

NOTE: Before you begin, we recommend two things:

• View the fantastic color images of coral reef systems and small-scale fisheries in 
the Appendix. These images explain the organisms and fishing practices and will 
help you visualize the heterogeneity of this seascape;

• Print the map associated with this lab which will be used in Part 3. It can be 
found on the web site for this book (file called reef_map.pdf) and within your 
reefs.xlsx spreadsheet under the tab entitled: seascape map PRINT THIS.

 INTRODUCTION

Biotic and abiotic factors influence how an ecosystem functions. New elements can 
be added (invasive species), old pieces can be lost (local extinction), and the most 
common components can change over time. Such changes can cause an ecosystem 
to shift to an alternative state. In a coral reef system, a shift from a coral-dominated 
to a macroalgae-dominated system provides one classic example of a regime shift 
(see Appendix Image Series 1). Such shifts are generally driven by human impacts, 
and the alternate state is characterized by changes in ecological structures and spe-
cies interactions. Regime shifts can have a significant influence on societal and 
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economic development through changes in ecosystem services provided by the sys-
tem. For example, coral-dominated reefs provide protein and livelihoods to millions 
of people in tropical coastal zones (Burke et al. 2011). In contrast, once reefs are 
dominated by macro-algae, reefs are likely to provide less food and fewer types of 
fish to dependent communities. Consequently, social and ecological systems are 
intimately linked (Graham et al. 2013).

 An Introduction to the Dynamics of Coral Reefs

Corals—the main architects of coral reef ecosystems—are small colonial inverte-
brates (3–56 mm) that form colonies and build the reefs as shelters (Appendix 
Image Series 2). The evolutionary success of reef-building (hermatypic) corals in 
forming reefs is to a large extent due to the symbiosis between the coral host (polyp) 
and its unicellular symbiotic microalgae (zooxanthellae). The creation of this three- 
dimensional framework has supported many dependent species and, over time, has 
made coral reefs to one of the most diverse ecosystems on Earth. Coral reefs have 
suffered mass extinctions throughout geologic history and the present reef ecosys-
tems are therefore a product of only the past 45–50 Ma of evolution. The current 
distribution of corals is much the result of the last ice age (i.e., approximately 10,000 
years ago (Kauffman and Al Fagerstrom 1993).

 Herbivory and the Balance Between Corals and Macroalgae

Reef ecosystems are shaped by important ecological feedbacks (Figure 18.1; 
Nyström et al. 2012). Competition between corals and algae for resources such as 
light and space is paramount (Burkepile and Hay 2008). When in a healthy state, 
corals are the primary space-holders (Appendix Image Series 1a) and algae are kept 
under control by the constant grazing of herbivorous fish (Hughes et al. 2007). This 
process depends on the abundance of herbivores and the area of algae that needs to 
be grazed (Mumby et al. 2007). Reefs face many perturbations, such as typhoons or 
destructive fishing, which open up space by removing or killing corals. The loss of 
corals promotes algal growth and can overwhelm the grazing capacity of herbi-
vores. This is when the regime shift occurs (Appendix Image Series 1b; Williams 
et al. 2001). Once macroalgae are established there is a range of feedback mecha-
nisms that can reinforce their presence and the macroalgae-dominated state.

 Coral Reefs in the Anthropocene

Despite their long history, coral reefs have suffered significant impacts from human 
activities (Pandolfi et al. 2003), which have resulted in worldwide loss of coral reefs 
(Gardner et al. 2003; Bruno and Selig 2007). The drivers causing these impacts are 
in many cases related to human activities, such as overfishing, pollution, and 
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climate change, but they operate in tandem with natural disturbance regimes such as 
hurricanes and diseases (Hughes and Connell 1999; Nyström et al. 2000). Loss of 
resilience is making coral reefs increasingly vulnerable to these perturbations 
(Nyström et al. 2000). Since an algae-dominated ecosystem may no longer provide 
the goods and services desired by society (Moberg and Folke 1999; Burke et al. 
2011), avoiding shifts to degraded states is important for societal and economic 
development (Nyström et al. 2012).

This lab is set in a hypothetical landscape based on the central Philippines 
(Figure 18.2), an area with breathtaking marine biodiversity, located in the Coral 
Triangle which is considered the global center of marine biodiversity. Despite their 
rich diversity, coral reefs in the Philippines are increasingly vulnerable to distur-
bance with a large human population that depends heavily on the reefs for 
livelihoods.

 Part 1. Patch-Level Dynamics of a Reef

 Model Description

We have developed a model of coral reef dynamics that explores the shift from a 
coral to an algal dominated state in one patch reef. The model is based on basic 
population dynamics where the birth rate of a population is steady, the death rate 

Figure 18.1 A conceptual model of the dynamics influencing whether coral or algae dominates a 
reef ecosystem. Note both negative (balancing) feedbacks as well as the positive (self-reinforcing) 
feedbacks. Images: Dieter Tracy, Tracy Saxby. IAN image library (ian.umces.edu/imagelibrary)

J.C. Selgrath et al.
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increases with increasing population size, and the population size is stable, where 
the birth rate and the death rate intersect (Figure 18.3). The model incorporates 
stochastic dynamics, which are the random events that naturally occur in ecosys-
tems such as storms and disease outbreaks. You can find this model in the 1.reef 
fishery tab of the reef.xlsx file.

The model reef is composed of coral, algae, and a population of fish. In the 
model, coral growth depends upon the cover of coral, space available to colonize, 
and the biomass of herbivorous fish. The herbivorous fish keep algae in control and 
hence help to maintain high coral cover. Herbivorous fish biomass is influenced by 
feedbacks because fish biomass affects competition and reproduction. The maxi-
mum fish biomass is set by the amount of coral available as shelter. In a reef with 
low coral cover, algae will outgrow coral and dominate the reef (Figure 18.4). When 
fish biomass is low algae become more competitive and a high coral cover is 
required for corals to be self-sustaining. These dynamics mean that a reef can be 
dominated by either coral or algae, and that the size of the herbivorous fish popula-
tion increases the resilience of a coral reef. In the model, fishing lowers the resil-
ience of a coral reef by removing fish and coral. For the model’s Initial Conditions, 
1 represents the proportion of the potential coral cover or fish biomass for the site 
(i.e., a proportion of 1 = 100%).

Figure 18.2 Hypothetical landscape in central Philippines with a westward ocean current. Zoom 
panels show different aspects of this social–ecological landscape. Panel (a) Degraded reef with low 
spatial complexity and low fish biomass. Panel (b) Small-scale fishers using different gears on the 
fringing reefs near their village. From right to left: blast fishing; nets; hand lines; traps; skin diving; 
gleaning. Panel (c) A healthy reef with high spatial complexity and high fish biomass. Panel (d) The 
marine landscape. Panel (e) Reef fish larvae dispersing between reefs. Fisher drawings: Danika 
Kleiber. Images: Dieter Tracy, Tracy Saxby. IAN image library (ian.umces.edu/imagelibrary)
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Figure 18.3 Dynamics of a population. (a) The birth rate is steady, (b) the death rate increases 
with population size, and (c) the population is stable when the birth rate equals the death rate

Figure 18.4 The dynamics of coral reef systems are influenced by the relationships between the 
growth of algae, the growth of the herbivorous fish population, and coral cover. The tipping point 
of a coral ecosystem exists at the balance between herbivore biomass and algal density. The system 
tends towards a coral-dominated state above the tipping point and towards and algal-dominated 
state below the tipping point

J.C. Selgrath et al.
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SPREADSHEET HINTS

• Download the file reefs.xlsx from the book web site

• Figures and Tables embedded in the reefs.xlsx file are labeled with Excel before their name 
(e.g., Excel.Figure 1.1 will be in reefs.xlsx in the 1.reef fishery tab).

• Answers for all questions can be entered into reefs.xlsx. The answers you type will be added 
automatically to the 5.answers tab. Hitting the update key (explained below) will update 
your answers.

• Update or rerun the model by pressing “F9” on a PC.
• For Macs, rerun the model by pressing “command” and “=” at the same time.

• You can also rerun the model by changing the text in an unused cell and pressing Enter. On 
old versions of Excel for Macs “+/-” also works.

EXERCISE 1: Dynamics in a Small Coral Reef

 1. Begin by using the 1.reef fishery tab in the reef.xlsx file.
 2. Set the initial model parameters in the 1.reef fishery tab in the Excel.Table 1.1 

Model Parameters table to match below (Figure 18.5).
 3. To generate stochastic dynamics in the model, you can rerun the model by hitting 

an update key or set of keys. [“F9” on a PC; for a Mac use “command” and “=” 
simultaneously]. Each time you rerun the model, the graph in Excel.Figure 1.1 
will update. This happens because every time you rerun the model you create a 
new random trajectory for the reef. The trajectory is based on two things: the 
starting conditions and the years when typhoons occur. Typhoons are a shock to 
the ecosystem, which reduce resilience by suddenly removing large amounts of 
coral. In the graph in Excel.Figure 1.1, typhoons are indicated by black squares. 
In the same figure, the different color lines represent characteristics of corals 
(orange), fish (purple), algae (green), and the fishers’ catch (blue).

 4. Try three different Initial Conditions values for Coral Cover: 0.99; 0.65; and 
0.50. Changing the initial condition value for coral initializes the system within 
different regimes (i.e., different dynamics of fish, algae, and coral and different 
responses to typhoons). Run the model 10+ times for each initial condition and 
track the dynamics of the reef over time in Excel.Figure 1.1. Pay attention to the 
system’s response (a) to one typhoon, and (b) to multiple typhoons that occur 
over short time periods.

Excel.Table 1.1 Model Parameters

Yes(1)/No(0) Coral Cover 0.99

0.98
Herbiverous Fish
Biomass

0
0.15
0.99

Catchability (q)
Effort

FISHING Initial Conditions (Proportion)

Figure 18.5 Start with these Model Parameter values in the 1.reef fishery tab in your spreadsheet
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Q1  Compare the trajectories of reefs with initial coral cover values of 0.99 and 
0.65.
 (a) What is the meaning of the two initial values for coral cover?
 (b) When you change the initial coral cover, does the reef remain coral domi-

nated or shift to algae?
 (c) How many years does it take these changes to occur for fish and coral?

EXERCISE 2: Reef Fisheries

Human activities such as fishing can alter the ecological dynamics of coral reef sys-
tems. Overfishing of herbivorous fish can change the competitive balance between 
corals and algal (Figures 18.1 and 18.4). Different fishing gears vary in their effective-
ness in capturing fish and also in the damage they cause to coral (see Appendix Image 
Series 3). The use of destructive gears such as blast fishing (using explosives) is an 
extremely effective way to catch many fish in a short time. However blast fishing is 
bad for the ecosystem and the fishery. Blast fishing kills all nearby fish and inverte-
brates, including species not targeted by the fishers, juveniles, and corals (Alcala and 
Gomez 1987). By damaging corals, blast fishing destroys the shelters and reproduc-
tion grounds of herbivorous fish (Appendix Image Series 3a; Graham et al. 2006). 
Traps are more selective in what they catch. They can cause some localized damage 
if they get caught in the corals, but the damage is minimal when compared to blast 
fishing (Appendix Image Series 3b). Hook and Line fishing is another commonly 
used gear in the region (Appendix Image Series 3c, d). However, this gear catches 
fewer herbivorous fish and does virtually no damage to corals. In this sense, hook and 
line fishing has less of an effect on the resilience of coral reefs than destructive gears 
such as blast fishing.

Next, you will explore the relative impact of fishing on the resilience of a small 
reef patch. The Catchability (q) parameter characterizes the efficiency of a fish-
ing gear that is catching herbivorous fish so switching this parameter is similar to 
switching gear. Catchability is influenced by several factors including the efficiency 
of fishing gear, fish behavior, and fish biomass. In the model, catchability can range 
from 0 (no fish are caught) to 1 (all fish are caught). The Effort parameter describes 
the amount of time that fishers spend fishing. In this model, the effort parameter 
describes relative effort: 0 means no effort and 1 means fishing as much as possible.

 Effects of Fishing and Catchability

• Remain on the 1.reef fishery tab. Turn on fishing in Excel.Table 1.1 by typing in 
the new Model Parameters shown in Figure 18.6.

• Run the model 10+ times and track the outcomes.

Q2  What happens to the resilience of the system when fishing is added? Explore 
the impact of different levels of catchability (0.05, 0.1, 0.2) and track the 
outcomes.
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Q3  How does the catchability of the fishing gear influence the fish population’s 
resilience to typhoons? How could you manage fishing gear catchability to 
improve system resilience?

Q4  How could you manage fishing gear catchability and/or fishing effort to improve 
system resilience?

 Part 2. Spatial Dynamics of Reefs

The resilience of an ecosystem is influenced by anthropogenic impacts. However, 
impacts from threats such as fishing can be camouflaged by sharing of resilience 
among spatially separated areas, such as neighboring reefs (Nyström and Folke 
2001; McCook et al. 2009). One of the reasons that reefs share resilience is because 
of the movement of individual fish and invertebrates among reefs during their larval 
dispersal phase (Kinlan and Gaines 2003). During this phase most marine organ-
isms, including corals, fish, and algae, travel from their birth site to recruit (i.e., 
settle) at a new location. This process is made possible by ocean currents. In this 
sense, spatial exchange of biodiversity provides some insurance against distur-
bances (Loreau et al. 2003).

EXERCISE 3: Linked Reefs

You will now work with a spatially explicit model that is found on the 2.spatial 
reefs tab of reefs.xlsx. The spatial reefs model represents the dynamics for 10 reefs 
that are spatially linked. In this model, larval fish (Figure 18.2e) and algae disperse 
among reefs, but reefs at the edges receive fewer recruits than central reefs because 
they only have one neighbor.

 1. Open the 2.spatial reefs tab in reefs.xlsx.
 2. Examine Excel.Figure 2.1. This figure shows the average value of coral, fish, 

algae, and catch for the 10 linked reefs.
 3. Examine Excel.Figure 2.2. The reefs are numbered based on their distance to 

the village (1 = close, 10 = far). The arrows indicate that larvae from the reefs 
travel in both directions. There is connectivity between adjacent reefs.

 4. Examine Excel.Figures 2.3–2.5. These figures show the spatial dynamics of 
coral cover, fish biomass, and catches, respectively. From top to bottom each 
figure shows the value at reefs 1–10. Thus, the top of the graphs are the reefs 

Excel. Table 1.1 Model Parameters

Yes(1)/No(0) Coral Cover 0.99

0.98
Herbiveous Fish
Biomass

1
0.1

0.99
Catchability (q)
Effort

FISHING Initial Conditions (Proportion)

Figure 18.6 Use these Model Parameter values to turn on fishing in the 1.reef fishery tab
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closest to the fishing village while the bottom of the graph indicates the reefs 
furthest from the fishing village. From left to right, the figure shows the progres-
sion of time from Year 1 to Year 100.

 5. In the Excel.Table 2.1, the Initial Conditions indicate the relative value of coral 
and fish at each reef (reefs 1–10) and in the first year (time = 0). The values for 
Coral0 and Fish0 equal the proportional cover or abundance of corals and fishes 
in the first year at each reef. In the first year, coral cover is high at all reefs 
(Coral0 = 0.99) while fish are highest in the middle reefs (Fish0 = 0.98). We will 
change the fishing dynamics and see how this affects the coral, fish, and catch.

 6. Confirm that the Excel.Table 2.1 Model Parameters match those in Figure 18.7. 
When fishing = 0, no other fishing parameters are turned on because fishing is 
not running in the model.

 7. Run the model 10+ times with the initial conditions described in Table 18.3. 
Look at the spatial and temporal dynamics in Excel.Table 2.1 and Excel.Figures 
2.3–2.5. Notice how coral and fish respond to typhoons.

 8. In Excel.Table 2.1, change Site 1 and Site 5 to algae dominated by setting 
Coral0 = 0.2.

 9. Run the model 10+ times with these new parameter values. Track the spatial and 
temporal dynamics.

Q5  How do algae-dominated reefs affect the resilience of their neighboring reefs to 
typhoons?

EXERCISE 4: Heterogeneous Fishing and Fisher Mobility

Continuing to use the model in the 2.spatial reefs tab, we will now examine the 
influence of humans on resilience by exploring how heterogeneous fishing across a 
reef interacts with the spatial dynamics we explored above. In the model, when:

• Mobile Fishing: Yes(1)/No(0) = 0, fishing is not mobile and is restricted to 
shore (Location 1).

Excel.Table 2.1 Model Parameters
Fishing Catchability

Coral Damage

Initial Conditions

Gear

Fishing: Yes(1)/No(0) q (Hook & line) Site Coral0 Fish0

Hook & Line
Blast

q (Blast fishing)

0 0.15

0.6 1 0.99 0.59

0.85
0.94
0.98
0.98
0.98
0.98
0.94
0.85
0.59

0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99

2
3
4
5
6
7
8
9

10

0.01
0.1

0

1

0
0.99

0

Mobile Fishing:Yes (1)/No (0)

Location (if not mobile)

Hook & Line(0); Blast fishing (1)
Effort

Max Catch

Figure 18.7 In Excel.Table 2.1, set these Model Parameters in the 2.spatial reefs tab
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• When Mobile Fishing: Yes(1)/No(0) = 1, fishing is mobile and fishers can fish 
 anywhere, targeting sites with the most fish.

In the model, we represent two types of fishing gear. Hook & line has moderate 
catchability and is not destructive. Blast fishing has high catchability and is very 
destructive.

 1. Set the Excel.Table 2.1 Model Parameters to match Figure 18.8. Return Initial 
Conditions to Coral0 = 0.99 for all sites.

 2. Run the model with fishers only fishing near land (Location 1 is the reef that is 
adjacent to the fishing community). Run the model 10+ times for:
• Hook and line fishing (set Gear = 0 and Mobile Fishing = 0)
• Blast fishing (set Gear = 1 and Mobile Fishing = 0)

Q6  How does the location of stationary fishing (i.e., only targeting the closest reef) 
influence the dynamics of the fish and coral at that reef and at the neighboring 
reefs?

 3. In Excel.Table 2.1 turn on mobile fishing by changing the cell Mobile Fishing: 
Yes(1)/No(0) = 1). This allows fishers to target any reef. Run the model 10+ 
times for:
• Hook and line fishing (Gear = 0 and Mobile Fishing = 1)
• Blast fishing (Gear = 1 and Mobile Fishing = 1)

Q7  How does the resilience of the ecosystem change when the fishers are able to 
target all of the reefs?

Q8  How would you manage fishing on a network of reefs differently from an iso-
lated reef to make the fishery more sustainable? Is it possible to make the fish-
ery sustainable while reducing the possibility of a regime shift?

Excel.Table 2.1 Model Parameters
Fishing Catchability Initial Conditions

Site Coral0 Fish0Fishing: Yes(1)/ No(0) q (Hook & line) 0.15

0.6 1 0.99
0.99

0.99
0.99

0.99
0.99
0.99
0.99
0.99
0.99

0.59
0.85

0.98
0.94

0.98
0.98
0.98
0.94
0.85
0.59

2

4
3

5
6
7
8
9

0.01

10

0.1
Hook & Line

q (Blast fishing)

Blast

1

0

0

1

0.99

0

Mobile Fishing:Yes (1)/ No (0)

Hook & Line(0); Blast fishing (1)

Location (if not mobile)

Effort

Max Catch

Gear Coral Damage

Figure 18.8 In Excel.Table 2.1, set these Model Parameters in the 2.spatial reefs tab
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 Part 3. Linking Social–Ecological Landscapes Across Scales

In the previous section, we considered how coral cover, fish biomass, disturbance, 
and fishing gears interact to influence the probability of a regime shift. We looked at 
an individual reef and at the interaction of connected reefs across the landscape.

Here, we increase the complexity of the system and examine the potential for 
regime shifts to occur under social–ecological conditions operating at different 
scales. We will take a more in-depth look at how the biological processes that oper-
ate inside individual reefs interact with the biophysical and social processes that 
occur across a seascape. While the calculations in the lab are simplified from the 
dynamics found on reefs, they provide a conceptual outline of many processes that 
influence reef resilience. We will consider three social factors: human population 
size, livelihood availability, and enforcement of fishing regulations (as a proxy for 
community support of sustainable fishing).

• Look at the map shown in Figure 18.2. This seascape is based on a region of the 
Philippines.

• Look at the printed seascape map or the 4.seascape map tab in reefs.xlsx. The 
seascape map (Excel.Figure 4.1) is a raster (grid) version of the map on 
Figure 18.2, which you will use to do further calculations in the lab. NOTE: We 
recommend that you print the larger version of this map found in the 6.seascape 
map PRINT THIS tab in the spreadsheet or reef_map.pdf.

 Livelihoods on Islands

The four islands in this ecosystem (Figure 18.2; seascape map) are surrounded by 
fringing coral reefs (reefs adjacent to the island). Islanders focus their fishing on the 
fringing reef adjacent to their home island. Since the human population has been 
increasing, there are more fishers than the reefs can support. On a large island, other 
livelihoods such as farming or construction work are available. However, on small 
islands most livelihoods depend on extracting resources from the ocean and from 
the nearby fringe reefs, even though catches have been declining. Some fishers have 
responded to declining catches by turning towards destructive gears.

Q9  Based on what you learned in Part 1 and Part 2, how might each of the social 
factors listed below influence the resilience of a coral reef system?
 (a) Human population size
 (b) Availability of alternative livelihoods
 (c) Community support for sustainable fishing and enforcement

• Open the 3.seascape tab in reefs.xlsx. (NOTE: You will scroll down through the  
3.seascape tab as you go along, but do not need to see the entire worksheet at one time).

• Type your answers in the boxes provided in the 3.seascape tab. Your answers in 
the blue columns will be automatically added to the 4.seascape map tab and to 
the 5.answers tab.
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EXERCISE 5: Patch-Scale Influence of Structural Complexity, Reef Size,  
and Island Size

The total number of fish on the island are influenced by the structural complexity of 
the coral and the total reef area (Lingo and Szedlmayer 2006; Graham and Nash 
2013). In the social realm, the area of an island can correspond to the percentage of 
adult men on an island who work as fishers (Selgrath, unpub data).

• In Excel.Table 3.1, look at the relationship between reef structural complexity 
and herbivore density. Notice how the density of herbivorous fish changes as 
structural complexity goes up or down.

Calculation 1: Reef Area
Using the seascape map, calculate the total area for the fringing reef (i.e., patch 
size) associated with each island. Each cell on the map is 1 km × 1 km. (Excel.
Table 3.1). (NOTE: Some of the calculations have been done for you to save time, 
but be sure to look at all of the answers. The columns where you will enter answers 
are indicated in green).

Calculation 2: Herbivores on Entire Reef
Based on the herbivore densities of each island (Excel.Table 3.1), calculate the total 
number of herbivores found on each island’s fringing reef, using the following 
equation. Enter your results in Excel.Table 3.1.

Number of Herbivores = Herbivore Density × Reef Area

Q10  Based on relative herbivore abundance, you’ll make a hypothesis about which 
islands have higher resilience, which we will compare with the outcomes at 
the end of the lab:
(a) Which island’s coral reefs seem to have coral states that are resilient and 

which seem to not be resilient?
(b) List two reasons why you made this selection.

• In Excel.Table 3.2, the area of each island and the number of fishers has been 
calculated for you. Notice how the number of fishers is similar on some islands 
with different population sizes.

Number of Fishers = % fishers on island × adult male population

• In Excel.Table 3.3, look at the relationship between island size and the % of men 
who are involved in fishing.

• Fill in the number of fishers on each island (from Excel.Table 3.2) into Excel.
Table 3.4 to answer Question 11. (NOTE: Islands in Excel.Table 3.4 are 
ordered by size, so are not in the same order as Excel.Table 3.2)

• Refresh Excel.Question 11 Graph, which shows the relationship between island 
size and number of fishers. The Excel.Question 11 graph will also be copied into 
the 5.answers tab.
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Q11  Based on Excel.Table 3.2 and the Excel.Question 11 Graph, how does the 
number of fishers vary with island size? Why do you see this pattern? Is this 
the relationship you expected?

Q12  How might the percentage of people dependent on fisheries influence the abil-
ity of the island communities to adapt to a changing environment?

EXERCISE 6: Landscape-Scale Factors Influencing System Dynamics

Larval recruitment and the social conditions that influence fishers’ decisions about 
what fishing gears to use are examples of ecological and social processes occurring 
over broad spatial scales. Importantly, both processes may affect resilience and may 
vary widely across the seascape.

Ocean Currents and Connectivity

As you learned in Part 2, herbivore recruitment is influenced by self-recruitment 
(larvae that stay at their home reef) and external recruitment from neighboring reefs. 
Nearest-neighbor distance (here, the distance between two patches of coral) is one 
factor that can influence recruitment.

• Look at Excel.Table 3.5 where the distance between each island’s fringing reef 
and its nearest neighboring reef is calculated for you. This distance is from the 
fringing reef to the nearest reef in any direction.

Calculation 3: Distance to Nearest Reef
Due to a current pattern which travels from east to west, larval recruitment of herbi-
vores from external reefs can only come from neighboring reefs that are directly 
eastward. Larvae born at such source reefs disperse with the ocean current, and 
recruit to sink reefs where they will live as adults. Calculate the distance between 
each island’s fringing reef and the nearest reef that is also directly east. This can 
include the fringing reefs of other islands. Answers go in Excel.Table 3.5.

Calculation 4: Recruitment via Dispersal
Assume that herbivore larvae can travel up to 4 km, and only along the prevailing 
East → West current. Assess whether herbivore recruitment from external reefs that are 
larval sources occurs at each island’s fringing reef. Answers go in Excel.Table 3.5.

• External recruitment (via dispersal) = YES if:
A source reef is ≤ 4 km from an island’s fringing reef; and
The source reef is directly up-current from the fringing reef (i.e., it is 
eastward)
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• External recruitment (via dispersal) = NO if:
The fringing reef > 4 km from the nearest neighboring reef that is directly up-
current (i.e., it is not eastward)

Q13  How does the distance between reefs interact with current patterns to influ-
ence recruitment (via dispersal)? For Banahaw Island, explain how you might 
predict such external recruitment patterns differently if you did or did not have 
knowledge about currents.

EXERCISE 7: Seascape Co-Management, Enforcement, and Fishing Gear

In 1998, the Philippine Fisheries Code prohibited the use of most destructive gears, 
but the use of these practices continues. To reduce destructive fishing, some fishing 
communities, NGOs, and municipal governments collaborated to hire boat-based 
fisheries enforcement officers. This co-management model of enforcement led to 
more successfully managed nearshore islands, but did not have a significant effect 
on outlying islands. Enforcement is limited by the cost of fuel because officers are 
not able to afford the gas to travel to distant islands. Limited enforcement and a 
culture that is tolerant of destructive fishing mean that destructive fishing practices 
persist in these outlying areas (Marcus et al. 2007; Excel.Table 3.6).

Calculation 5: Gear Usage
Based on their distance to the enforcement office, what fishing gears do communi-
ties use? Enter the names of the gears used by communities in Excel.Table 3.5. 
Information to answer this question can be found in Excel.Table 3.5 and Excel.
Table 3.6.

EXERCISE 8: Regime Shifts and Cross-Scale Interactions

As you learned in the previous section of the lab, social–ecological factors can 
interact across scales to influence the resilience of these linked systems. Here, we 
will explore the interaction of factors operating at patch and landscape spatial scales 
(i.e., cross-scale dynamics).

Calculation 6: Herbivores Caught per Year per Island
Based on results from Calculation 5, each island’s annual number of fisher catch 
can be estimated from Excel.Table 3.6. Calculate the total number of herbivores 
caught per year for each island. Answers go in Excel.Table 3.7 and will be auto-
matically added to the 4.seascape map tables.

Herbivores Caught per Year per Island =  Number of Fishers on island ×  
Annual catch per fisher
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• Examine Excel.Table 3.7, where the number of Herbivores Remaining after 1 
year is the initial number of herbivores less the fish that were caught and natural 
mortality.

The total number of new recruits (juvenile fish) for each fringing reef is influenced 
by larval supplies. Recruitment is a combination of self- recruiting individuals (i.e., 
those that stay at their home reef, which is influenced by local fish populations) and 
individuals that recruit from up- current reefs (i.e., via dispersal; see Excel.Table 
3.7, Recruitment to Reef). The estimated recruitment has been calculated for you 
and was calculated using the formula below. Only reefs with neighbors ≤ 4 km 
receive external recruitment.
• If Neighbors < 4 km: self-recruitment + recruitment from up-current reefs

Recruitment = (0.25 × remaining fish population) + (700,000 × (1/distance to near-
est eastward reef))

• If Neighbors > 4 km: self-recruitment only
Recruitment = (0.25 × remaining fish population)

Calculation 7: Final Number of Herbivores on Reef
In Excel.Table 3.7, estimate the final number of herbivores at the end of the year 
after adjusting for recruitment for each island’s fringing reef.

Final Number of Herbivores = Number of Herbivores Remaining + Recruitment

Calculation 8: Difference Between Final and Original Number of Herbivores
In Excel.Table 3.7, calculate the difference between initial and final herbivore den-
sities on each reef after a year of fishing.

Difference =  Final Number of Herbivores−Original Number of Herbivores  
(from Excel.Tables 3.7 and 3.1, respectively)

Calculation 9: Number of Herbivores on Reef with High Structural 
Complexity
In Excel.Table 3.7, calculate the theoretical number of herbivores expected at each 
reef if the reef had high structural complexity. The number of herbivores found on 
reefs with high quality habitat is 148,000 per km2.

Number of Herbivores on Healthy Reef = 
148,000 per km2 × Reef Area (from Excel.Table 3.1)

Fishing decreases fish densities directly through removal and indirectly through 
habitat destruction. Thus, a complex reef can sustain a high density of reef fish 
while a fished reef that has experienced habitat destruction can support fewer fish.

Calculation 10: Percent of Herbivores Present on Reef
Determine what percent of the total possible herbivores on healthy reefs is present 
at each reef after a year of fishing? Place your answers in Excel.Table 3.7. (NOTE: 
Enter as a percentage).

Percent of Herbivores = Final Number of Herbivores (Calculation 7)
Number of Herbivores on Healthy Reef (Calculation 9)
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The likelihood of a coral reef to shift to an algae state when hit by a disturbance 
(e.g., a typhoon) is affected by the abundance of herbivorous fish.

Calculation 11: Resilient Reef
Based on the percent of herbivores present on the reef from Excel.Table 3.7, use 
Excel.Table 3.8 to predict if each island’s fringing reef is resilient and hence likely 
to remain in a coral dominated state. Here, reefs are considered resilient if herbivore 
populations are more than 40% of the herbivore population size expected if the reef 
had high habitat structure.

Resilient Reef = Is Calculation 10 > 40%? (Yes/No)

• Open the 4.seascape map tab in reefs.xlsx. On this tab, the several answers 
from your calculations in the 3.seascape tab can be found, but this time they are 
arranged by island. Blue indicates cells containing the answers you calculated.

• Examine how characteristics of the island vary spatially. Use the information 
about each island to answer Questions 14–17.

 DISCUSSION QUESTIONS

Open 4.Seascape map to answer these two questions.

Q14  Which island(s) are the most vulnerable to fishing impacts? Which island(s) are 
ecologically resilient (i.e., which island(s) have a combination of social–ecologi-
cal factors that are keeping them from undergoing a regime shift)? How does this 
differ from your original predictions (based on your response to Q10)?

Q15  Although it may seem homogenous at first glance, this seascape is quite 
diverse. How can accounting for spatial variability in this or other landscapes 
improve our understanding of an ecosystem’s spatial resilience?

 SYNTHESIS

These are optional and can be assigned as homework.

Q16  We’ve presented a simplistic model of the relationship between enforcement 
and gear choice. In real situations, the use of illegal fishing gears is often 
influenced by complex factors such as management resources, corruption, 
social acceptability of illegal practices, and external actors such as migrant 
fishers. Discuss how one of these factors might influence the effectiveness of 
community efforts to manage their fisheries.
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Q17  Marine Protected Areas (MPAs) are an important management tool in spa-
tially managing fisheries. The placement of MPAs can vary based on different 
conservation priorities, including protecting vulnerable areas, protecting 
important source areas (i.e., where larvae come from), protecting areas that 
are the least vulnerable to climate change, and protecting areas that receive the 
greatest community support for protection. 
(a)  Considering how fishing pressure, recruitment patterns, and social situa-

tions might influence MPA placement, come up with three MPA sites for 
this seascape. Each MPA can include up to 5 grid cells (1 grid cell = 1 km2).

(b)  Explain where you would put the MPA on the map and describe how the 
placement of each of the MPAs would meet a conservation priority that 
you identify. 

(c) You can draw your MPAs on the printed copy of the seascape.

Q18  When considering regime shifts in terrestrial environments, recruitment may 
be a factor, but will operate in different ways. In the case of urban forest 
patches, acorns are spread up to 18 km by Jays gathering acorns in distant 
patches and storing them in seed caches (Lundberg et al. 2008). In this way, 
Jays increase a system’s resilience by creating greater connectivity among 
patches and improving the seed supply to isolated patches. 
(a)  Discuss similarities and differences between this terrestrial dispersal 

 process and the coral dispersal process modeled in this lab. 
(b)  If you were going to make an urban protected area, how would you design 

the park to support this seed dispersal process?

Q19  In this lab, we have considered the resilience of a coral reef ecosystem; how-
ever, many other types of ecosystems are subject to regime shifts. Visit the 
regime shift database (www.regimeshifts.org) and look over other examples 
of regime shifts. Choose one regime shift and list:
(a) the alternate regimes
(b) the drivers behind the regime shift, and
(c) the feedbacks reinforcing the alternative states.

Q20  For the regime shift you picked in the prior question, consider the following:
(a) Over what scale(s) are drivers and feedbacks operating?
(b) Are the drivers and feedbacks are social or ecological or perhaps inter-

linked social–ecological?

Q21  For your chosen regime shift, use pictures (cornerstones, graphs, ball and cup 
diagram, etc.) and write a one page description of the ways that the drivers and 
feedbacks at different scales might interact to lower the resilience of one sys-
tem, cause a regime shift, and then maintain the new system in a new state.

J.C. Selgrath et al.
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 APPENDIX: CORAL REEF AND SMALL-SCALE FISHING 
IMAGE SERIES

Image Series 1 Two potential regimes in coral reefs: (a) shows a “healthy” coral-dominated reef 
with abundant herbivorous fish, habitat complexity, and high productivity, whereas (b) shows a 
reef dominated by macro-algae. Image Credits: Jennifer Selgrath/Project Seahorse
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Image Series 2 Living coral polyps (a) form colonies (b) and are the building blocks of coral 
reefs. (c) Destruction of corals from blast fishing. Image Credits: Jennifer Selgrath/Project Seahorse

 

Image Series 3 Images of gears used by small-scale fishers in the Philippines: (a) blast fishing 
explosion; (b) fish trap with three fish inside; (c) hand line fishers paddling to their fishing grounds; 
(d) trigger fish caught by a hook; (e) dive fisher using a crowbar (KayKay) to pry abalone put of 
their hiding places in the coral reef; and (f) encircling gill net being pulled in by squid fishers. 
Image Credits: (a) Wolcott Henry 2005/Lynn Funkhauser; (b) Rebecca Weeks/Marine Photobank; 
(c, e, f) Jennifer Selgrath/Project Seahorse; (d) Lawrence Alex Wu/Marine Photobank
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Chapter 19
Understanding Land-Use Feedbacks 
and Ecosystem Service Trade-Offs 
in Agriculture

Lisa A. Schulte and John C. Tyndall

OBJECTIVES

Globally, a burgeoning human population and rise of a middle class are placing 
greater demands on our planet to produce ecosystem services than ever before. This 
pressure is particularly acute for current and future demands placed on agricultural 
land use. Farmers and other land managers are expected to satisfy existing commod-
ity markets (e.g., corn, soybean, forage, livestock), produce options for emerging 
agricultural markets (e.g., biomass for bioenergy), while protecting water quality, 
biodiversity, and recreational opportunities. Our global citizenry needs to under-
stand how ecosystems function in relation to the services desired and how land-use 
choices impact this functionality. Challenges to developing this understanding are 
multifold, and include complexities in landscape ecological functionality; time lags 
and spatial mismatches in how land-use decisions manifest ecosystem services; and 
cumulative impacts of multiple decision makers acting independently. Furthermore, 
ecosystem services are not always needed or desired by the people who own the 
lands that produce ecosystem services. As such, the science associated with differ-
ent ecosystem services, how they interact, and how people value them is not always 
well understood.

In this lab, you will work with an interactive online tool “People in Ecosystems 
Watershed Integration,” or PEWI, to evaluate feedbacks and trade-offs between 
agricultural land uses and environmental factors, including patterns in topography, 
soil, and rainfall in a realistic spatial simulation environment. Additional economic 
and social survey data will be used to determine how landowners and society value 
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ecosystem services derived from different land-use configurations. This lab is 
designed to help students:

 1. Understand the impacts of common agricultural land uses on the delivery of 
ecosystem services;

 2. Explore how land use interacts with spatial and temporal factors to influence the 
level of ecosystem services produced;

 3. Interpret, anticipate, and manage ecosystem and human system feedbacks;
 4. Visualize and simulate coproduction and trade-offs among specific ecosystems 

services; and
 5. Examine how individuals and societies value ecosystem services differently.

Working independently, students will design an agricultural watershed within 
PEWI to balance delivery of ecosystem services, including conventional crop and 
biomass production, clean water, soil carbon sequestration, and habitat for biodiver-
sity. In Part 1, you will familiarize yourself with the levels of ecosystem services 
associated with different land uses and create your ideal watershed. Class discus-
sion associated with this section will help you understand how different people 
value and trade off ecosystem services differently. In Part 2, you will design the 
watershed to produce specific, predetermined ecosystem service outcomes. Finally, 
in Part 3, you will use additional data to determine the economic value of the eco-
system services produced. You’ll need a computer with either Google Chrome or 
Mozilla Firefox installed as a web browser and an internet connection to complete 
the lab. Because the PEWI model will be updated with new scientific findings and 
new modules will be developed over time, please continue with the lab online, start-
ing here:

https://www.nrem.iastate.edu/pewi/feedbacks-and-tradeoffs
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Chapter 20
Social Networks: Uncovering  
Social–Ecological (Mis)matches  
in Heterogeneous Marine Landscapes

Örjan Bodin and Beatrice I. Crona

OBJECTIVES

Ecological and socioeconomic processes often operate over different spatial and 
temporal scales. This can lead to increased risks of resource misuse and overexploi-
tation if management is not well aligned with ecological processes operating in the 
landscape. One important way to ensure better alignment of social and ecological 
processes is through improved communication among relevant stakeholders operat-
ing at different scales and/or localities. Thus, understanding the structure and func-
tion of social networks is an important aspect of disentangling outcomes where 
different stakeholders come together to deal with natural resource dilemmas (Hahn 
et al. 2006; Olsson et al. 2006; Bodin and Crona 2009; Bodin and Prell 2011). For 
example, active successful networking of a few key actors at the onset of a resource 
management initiative was important for building trust and buy-in from local farm-
ers (Hahn et al. 2006; Olsson et al. 2006). Elsewhere, external connections were key 
to why some rural communities were more successful in initiating economic devel-
opment; a few key individuals with enough education and skills had contacts with 
donors and agencies outside the village. These ties to external actors with resources 
were crucial in differentiating successful outcomes in otherwise very similar rural 
Indian communities (Krishna 2002). In resource- dependent communities, particu-
larly in the developing world, a lack of formal institutions or enforcement of regula-
tions often means that resource users resort to informal social networks for 
coordinating resource use. To understand if and how social networks influence 
resource management, it is important to analyze both the patterns of communication 
but also how these patterns relate to key ecological processes in the landscape.
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In this lab, students explore a social network of small-scale resource users target-
ing multiple species in a heterogeneous landscape. The study system is an artisanal 
fishery in a rural, coastal fishing community in East Africa. Students will learn to:

 1. Analyze important characteristics of a social network of small-scale fishers in an 
East African coastal village;

 2. Investigate the extent to which different personal characteristics (attributes) 
coincide with patterns of social relationships;

 3. Analyze how patterns of social relations among resource users can be tied to the 
geographic distribution of resource extraction;

 4. Discuss possible implications of their network results with regard to social and 
ecological (mis)matches; and

 5. Gain exposure to commonly used software within the field of social network 
analysis.

To accomplish the above objectives, this lab is divided into three exercises. In 
Exercises 1 and 2, students learn to analyze real social network data in conjunction 
with information on personal attributes of fishers, such as occupation, ethnicity, age, 
and education. In Exercise 3, these social networks are examined relative to maps of 
different fishing localities throughout the landscape. All network-related analyses 
will use NetDraw (available as a free trial version when downloading the software 
program Ucinet). Prior familiarity with graph theory is assumed; thus, Chapter 12 
in this book is a prerequisite for this lab. For those less familiar with small-scale 
fishing communities, Chapter 18 can also be a very helpful complement. All the 
necessary files (and links to software) are accessible from the book website.

 INTRODUCTION

The ways in which natural resources are extracted (and potentially misused) by 
societies is a result of multiple socioeconomic processes (e.g., economics, poverty, 
culture, and tradition) as well as other structures (e.g., institutions that guide 
resource use, access to roads and markets). Another important factor affecting 
resource use and extraction is the amount and quality of information and knowledge 
available to resource users and other stakeholders. For example, a fisher unaware of 
the phenomenon of climate change and how it affects coral reefs cannot incorporate 
this consideration into his decisions about how much to fish or which gears to use to 
avoid further damaging the corals.

One can categorize the knowledge and information about the environment for 
resource extraction into two different but somewhat overlapping categories: (1) 
knowledge on how to maximize harvest while minimizing effort and (2) knowledge 
on how to extract resources in accordance with the natural limits posed by an eco-
system. The first category of knowledge, in a fishing context, would correspond to 
questions such as: “Where are the fish?”; “What gears should I use to catch the 
fish?”; and “How do I deploy those gears in the most efficient way?” The second 
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category is more concerned with how extraction can be done without negatively 
affecting future use of the resource. In a fishing context, this could correspond to 
understanding fish stock regrowth limitations (e.g., maximum sustainable yields), 
how different fish stocks migrate between different localities during different life 
stages, and how the targeted fish species interact with or depend on other species 
and the physical environment. Knowledge of these processes reduces the likelihood 
of overexploitation. Yet it is important to acknowledge that even with good knowl-
edge of a resource, overexploitation can and will often occur due to socioeconomic 
dilemmas like strong economic incentives and acute poverty (see Ostrom 1990). In 
such situations, the need to feed a hungry family will most often override any long- 
term concern for the biodiversity or resource sustainability (Barrett et al. 2011). In 
conclusion, both types of knowledge are important in achieving sustainable natural 
resource use. Thus, ways to create a better understanding of different social struc-
tures and processes that create, maintain, and distribute information and knowledge 
in a natural resource management setting are important.

 Informal Social Networks as a Conduit for Resource Users’ 
Communication

What can a social network perspective add to our understanding of resource gover-
nance issues? To answer this, let us first briefly define what we mean by network 
analysis. A network can be thought of as a set of nodes (actors) and their ties (rela-
tions). Network analysis is thus the study of social relations among a set of actors. 
A pair of actors that have relations can be said to share a social tie. Whereas main-
stream social science is concerned with attributes of individual actors (e.g., income, 
age, sex), network analysis is concerned with attributes of pairs of individuals and 
the relations between them. These relations can be categorized into kinship (such as 
brother of, father of), social roles (boss of, friend of), affective relations (such as 
likes, dislikes), and actions (talks to, or attacks). This relational approach can add 
several important aspects to our understanding of resource management.

First, in any resource governance/management setting people collaborate and 
interact. Who is included or excluded from deliberation processes or decision- 
making can be important for management outcomes. Such patterns can be uncov-
ered using a network approach. For example, in situations where users share 
resources, such as a fish stock, it is important that they are all willing and able to 
agree on and abide by common rules limiting resource extraction (Ostrom 1990, 
2005). From a network perspective, one could argue this is more easily achieved 
when users are socially well connected, as opposed to in isolated groups without 
much communication. A well-connected group is more likely to agree on what rules 
need to be developed. Social connectivity could also make it easier to monitor fel-
low resource users to report or sanction rule-breakers.

Second, many resources constantly flow between people in any social setting, be 
it information, knowledge, capital, new ideas, etc. All these resources impact how 
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people behave and choices they make and as such will influence resource manage-
ment outcomes. However, the flow of resources between people is seldom homog-
enously distributed among all actors. Some people will share more resources with 
others, and some less. Some actors will have many ties, and thus access to many 
resources, while others will have few.

Imagine a class of high school students. A few students tend to be extra popular 
and have lots of friends. The vast majority of students may have a somewhat smaller 
number of friends, while often classes tend to have one or two students who do not 
socialize with anyone in the class. Translating this into network terms, we could say 
that the popular students would be hyperlinked, and the students without class 
friends would be considered isolates. Now imagine you arrived new to this class and 
wanted to quickly build up relations. By befriending a popular student, and getting 
invited to an upcoming party, your exposure to new people has increased very rap-
idly. If, on the other hand, you first become acquainted with one of the “isolated” 
students, you would most likely not be invited to the party. Within the context of the 
class, this student is unlikely to introduce you to any further friends. A central per-
son, such as a popular student, has a certain amount of power to broker contacts, and 
depending on the social atmosphere in the class, acceptance or rejection by such a 
central student could greatly affect your future social network in the class. Actors 
playing such roles as hubs and “gatekeepers” exist in many networks and can be 
important in facilitating or impeding flow of resources throughout the network. In 
this lab, we are particularly interested in how the heterogeneous distribution of rela-
tions affects flow of information and knowledge among different actors in a network 
and how this could impact the two different types of knowledge outlined at the start.

By now, it should start to become apparent that mapping and analyzing the pat-
terns of social relations among a set of resource users is useful in assessing and inter-
preting information flows and knowledge generating processes in a natural resource 
management context. In addition to the connections among actors, the characteristics 
(or attributes) of each actor are also important. This information can be vital in trying 
to understand why certain subgroups appear, if central actors tend to share some com-
mon feature or skill, and what this could mean for the study system.

 Social Networks and Ecological Processes in a Rural Fishing 
Village in East Africa

With our short introduction to basic social network concepts in mind, let us now 
turn briefly to the type of networks in focus in this lab. Here, you will examine a 
social network of small-scale fishers who share information and knowledge about 
the state of the natural environment (the marine system) as well as extractive fishing 
practices. The fisher are all residents of a rural fishing village located on the Kenyan 
coast (see Crona and Bodin 2006 for a full description). The village has approxi-
mately 200 households and an estimated 1000 inhabitants. The surrounding area 
has approximately 5 km2 of mangroves with mudflats and seagrass meadows in the 
shallows and fringing coral reefs outside the lagoon. The use of resources in the 
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village is centered on fishing, and in this lab a social network consisting of all 85 
households (self-identified fishing households) is in focus. The study area repre-
sents a spatially heterogeneous landscape where many different species are har-
vested by many actors.

The high levels of heterogeneity and complexity in this system poses many man-
agement challenges, including: (a) many different groups of fishers are actively 
using the resource; (b) enforcement of regulations is weak due to limited govern-
mental financial resources as well as difficulty in monitoring fishing occurring both 
day and night (making it difficult to predict when fishers will land their catch at the 
beach and thus assess their catch); (c) contrary to many developed-world industrial 
fisheries, this is a multispecies fishery, thus its management requires knowledge of 
not just one, but many different fish stocks (which are composed of species which 
also compete and prey upon each other). These challenges are similar to ones found 
in many terrestrial systems, such as small-scale agricultural landscapes or forests 
owned and managed by multiple different actors. Thus, the social network approach 
used in this lab is relevant to many other types of social–ecological landscapes.

 EXERCISES

EXERCISE 1: Visualizing the Social Network

The dataset used in this lab consists of a set of social relations among small- scale fish-
ers whose relations are used to exchange information and knowledge on issues related 
to the natural environment. Communication can occur in different ways. Some fishers 
work together on a boat may spend long hours at sea with ample time to share ideas 
and knowledge. Others may sit together after returning from the sea, discussing issues 
while mending their nets or enjoying a cup of tea at the local shop. However com-
munication occurs, these types of informal social relations form the basis for under-
standing how knowledge and information flows through the community of fisher.

In this exercise, we will visually analyze the social network of these fishers. Each 
respondent is assumed to be the head of a fishing household, and thus no two fishers 
in the dataset are from the same household. The network data are in a file format 
used by the software program Ucinet (Borgatti et al. 2002) which is one of the most 
commonly used software packages for analyzing social networks. In this exercise, 
we use the helper application NetDraw, which accompanies Ucinet, to visually 
present the network in different ways.

Spring Embedding Network Visualization

There are many different techniques to visually present networks. A commonly 
used method is the spring embedding technique, which is a layout algorithm where 
each tie is treated as a spring which pulls actors towards each other (and the absence 
of a tie acts as a repelling spring pushing actors apart). All attracting and repelling 
forces of the ties are considered together and the nodes (actors) arranged 
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accordingly. Other visualization methods often build on this simple technique. In 
using the spring embedding technique, actors who are very central (with ties to 
many other actors) tend to be arranged in the middle, whereas less connected actors 
end up in the periphery of the plot. Subgroups (characterized by the fact that sub-
group members have more ties among themselves than with others in the network) 
are arranged as clusters in the visualization of the network.

In the data for this lab, all ties are binary (present or not), undirected (we do not 
consider who in the pair had named the other, as long as one actor has named another 
we consider there to be a tie), and unweighted (we do not try to estimate tie strength, 
such as by asking actors how often they interact). Social network analysis often 
does include directed and weighted ties and use of such data will have implications 
for the interpretation of the results. While we do not delve any deeper into to this 
here, for more advanced analysis we refer readers to SNA text books such as 
Wasserman and Faust (1994). To get started, follow these steps:

• Start NetDraw.
• Open the network datafile Fisher.##h using the pulldown menu File then Open 

then Ucinet dataset then Network.
• Choose Layout then Graph theoretic layout. A pop-up window labelled Spring 

Embedding will appear and click OK.
• Study the visual representations of the social network, answer, and/or reflect on 

the following questions.

Q1  To what extent is the community of fishers in contact with each other?

Q2  What is the relative connectivity of the fishers in the network? Why are some 
more central (i.e., more connected) than others?

Q3  Based on the patterns of relations observed here, to what degree do you think 
the community of fishers would able to come together and agree on common 
measures to regulate fish extraction?

Visualize Attributes of Fishers

Not all fishers in the village are the same as they typically fish at their particular 
favorite fishing grounds, specialize in different gears, and are embedded within dif-
ferent socioeconomic contexts. As a result, one might expect differences in knowl-
edge and experiences among fishers. However, this does not mean that one fisher’s 
knowledge is not helpful to another. In fact, the usefulness of others’ experiences is 
particularly salient in the context of complex ecosystem dynamics. For example, 
accounting for multiple species interactions and migration might be crucial to suc-
cessful fishing. Exchange of information and knowledge among different fishers 
would, at least in theory, provide for better opportunities to acquire a better and 
more holistic understanding of the underlying ecosystem.
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NetDraw can be used to visually present the different attribute values of the 
fisher (the nodes). This is a powerful way to get a first impression of how and if 
some attributes coincide with structural features of the network. In order to explore 
this further:

• Open the attribute datafile FisherAttributes.##h and make sure it is opened as 
an attribute datafile.

• Use NetDraw’s drawing abilities to show the attributes in different colors, sizes, 
and shapes according to the attribute values. Use the pulldown menu items 
Properties then Nodes then Symbols

• Consider the meaning of attributes in Table 20.1.
• Study the visual representations of the social network, answer, and/or reflect on 

the following questions:

Table 20.1 Description of fisher attributes

Attribute Description Values

Gear What gear is the fisher’s primarily fishing 
gear/method?

7 Middle man

11 Gill net

12 Spear gun

13 Hand line

14 Deep sea

15 Seine net

Religion What religion? 0 Unknown

1 Islam

2 Christianity

Lived in 
village

How long has the household been resident in 
the village?

0 Unknown

1 0–5 years

2 5–10 years

3 10–20 years

4 >20 years

Number of 
child

How many children in the household?

House type What type of roof of the household’s house 
(an indication of how wealthy the household 
is)

0 Unknown

1 Mud and thatch

2 Cement and thatch

3 Cement and iron plates

Age How old is the fisher

Tribe To which tribe does the fisher belong

Outside 
relative

How many close relatives outside the village 
does he/she have?

0 No relatives

1 Only relatives that are local 
(i.e., close to the village)

2 At least one relative from 
Tanzania

NOTE: The term “middleman” refers to the profession “fish monger” (not a gear type). Such indi-
viduals do not fish but are traders who buy fish at a landing site. They were included in the analysis 
as many have previously been active as fishers and thus are very knowledgeable and interact 
directly with the fishers on a daily basis.
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Q4 What attributes are shared among the most connected fishers?

Q5  How are fishers with similar attributes connected in the network? Do they clus-
ter together or are they dispersed throughout the network?

Q6  Can you think of any implications—in terms of fishers’ understanding of ecosys-
tem dynamics—arising from either of these patterns (clustered vs. dispersed)?

EXERCISE 2: Analyze the Fisher Network

In this exercise, we will start to formally analyze some structural characteristics of 
the network. We will start looking for highly central individuals and then explore 
how different subgroups can be identified.

Identify Central Actors

In most networks, there will be a smaller number of actors who are significantly 
more connected than others (captured by their degree centrality, Figure 20.1 Panel 
A). In a communication network of ecological knowledge, an actor with a high 
degree centrality could be influential since many people turn to him/her to access 
information about the natural environment. Another form of centrality is between-
ness centrality which is the extent to which an actor indirectly connects other actors 
in the network. It indicates the potential of the actor to act as a channel for flow of 
information as well as other resources such as ideas and disease. Actors with high 
betweenness can be crucial in bringing different subgroups socially closer to each 
other by acting as bridges. The dark grey actors in Figure 20.1 Panel B have higher 
betweenness centrality than the others in the subgroups. Some basic but fundamen-
tal analyses of node centrality can be done using NetDraw (and even more centrality 
analyses are available using Ucinet):

• In NetDraw, centrality measures can be found in the menu Analysis then 
Centrality measures. Select both degree and betweenness centrality. NetDraw 
will then create new node attributes using the centrality scores for each node in 
the network.

• Use this new attribute data to draw the size of the nodes in accordance with their 
degree centrality scores. Use the menu item Properties then Nodes then  Symbols 
then Size then Attribute based and select the degree centrality attribute.

• Other attributes can be simultaneously visualized using a different node color. 
For example, set each node’s color based on its gear type attribute value.

• Repeat the above steps procedure for (Freeman’s) betweenness centrality 
before reflecting on the questions below.

Q7  What attributes are shared among the most connected fishers (i.e., the ones with 
the highest degree centrality)?
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Q8  Who are the fishers with the highest betweenness centrality?

Q9  Why do you think fishers with the highest degree and betweenness centrality 
could be important for the community’s ability to manage their fish stocks?

Identify Subgroups

In many real-world social networks, actors tend to be clumped into subgroups 
(Figure 20.1 Panel B). A few actors in subgroups may have ties to members of other 
subgroups thus connecting the network as a whole (Figure 20.1 Panel B, dotted 
lines). Specific subgroups appear for different reasons related to the type of network 
under investigation. For example, in a friendship network they could represent 
cliques of close friends. In a network of fishers, it could represent a group of fishers 
using similar gears.

Numerous different analytical methods are available to identify different sub-
groups in networks. In this exercise, we will focus on relationally defined sub-
groups. Relationally defined subgroups are defined based on subgroup members 

a

b

Figure 20.1 Illustration of network characteristics. In Panel A, the network is highly centralized 
with an actor in the center with a higher degree centrality (i.e., higher number of links) than the 
others. In Panel B, the network is composed of two distinct subgroups (surrounded by circles). 
These subgroups are interconnected through links (dotted lines) connecting actors (in dark grey) 
who serve as bridges between the subgroups
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being socially tied in similar ways and is in contrast to subgroups defined by some 
common attribute value (like being members of the same tribal group).

NetDraw can be used to identify subgroups (and even more methods are avail-
able using Ucinet). Here, we use a clustering algorithm which divides the network 
into partitions consisting of different subgroups according to a “Q” score (aka 
Modularity, see Girvan and Newman 2002). Higher values of Q indicate a network 
composed of more distinguishable subgroups.

• Use the menu Analysis then Subgroups. Select a high value for the maximum 
number of clusters (e.g., select 30).

• Visualize subgroup membership using different colors (as in the previous 
exercise).

• Choose the partition with the highest Q-value. Notice how the Q-value increases 
as the number of groups increase up to a certain point, and then typically declines 
when the number of groups further increase.

• Layout the network grouped by the subgroup membership attribute (Layout then 
Group by Attribute then Categorical Attribute menu item), and then try visu-
alizing some other node attribute using different colors (such as type of gear).

• Consider if some of the attributes seem to coincide with the subgroup partition-
ing and the answer the following questions.

Q10 Can you find any distinguishable subgroups in the network?

Q11 What attributes distinguish these subgroups?

Q12  What do you think could be the cause of the patterns you’ve just observed? 
How could it affect governance of the resource?

EXERCISE 3: Compare Social Networks and Ecological Data

In this final exercise, the social network will be used to (qualitatively) analyze how 
the network and the ecological processes in the study area “match up,” and explore 
possible consequences for natural resource governance. Our goal is to determine if 
there is a good “fit” between the flow of information among the fisher and ecologi-
cal flows between different localities and species therein.

Analyze the Spatial Heterogeneity of the Seascape

The fish species targeted in the seascape represent a fairly heterogeneous mix of 
species at different trophic levels (grazers, benthivores, predators) which also 
exhibit different spatial distributions. Figure 20.2 illustrates the distribution of some 
major targeted species. Different types of fishing gear are typically used at different 
locations (Figure 20.2), and Table 20.2 describes these fishing gears along with the 
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major species targeted by each gear. Images and key characteristics of the major 
targeted species are also provided in Table 3 (from the book website).

• Obtain a printout of Figure 20.2 (or seascape.jpg) as well as Table 3. Both are 
available from the book website.

• Outline the spatial distribution of all the fish species individually, by circling the 
areas where they are found.

• Identify areas of overlap between these areas and the gear-defined fishing 
grounds (shown as dotted lines).

Figure 20.2 Seascape map depicting fishing grounds according to type of fishing gear used. The 
localities used to catch targeted fish species are also identified. For printing, this image is available 
from the book website as seascape.jpg
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• Species being targeted by one or several types of fishing gears can be distin-
guished (also use information in Table 3).

Q13  Which species are targeted using multiple gears, and which species are tar-
geted by only one specific gear?

Q14  What resource management implications might arise when different fishers 
using different gears target the same species?

Alignment of Social Networks and Ecological Processes

Next, we consider how well the social network and the heterogeneous seascape 
“match up.” This is a group exercise so these questions should be discussed in small 
groups. Each group will then present their insights to the rest of the class. One initial 
way to consider how well social networks among resource users and ecological pat-
terns/processes in land- and seascapes align is to simply overlay and visualize them 

Table 20.2 Description of fishing gear and some species targeted by these gears

Fishing gear Description

Gill net A net which is commonly used as a set net, i.e., it is not dragged actively in the 
water. Mesh size can vary.

Main species targeted: rabbitfish, emperor, snapper, barracuda

Spear gun A contraption (often home made) which, when deployed, releases a spear. Mainly 
used for larger individuals of varying species, but primarily used on the reef.

Main species targeted: parrotfish, snapper

Hand line A line, usually with one hook, often dragged behind a canoe but also larger vessels. 
Hooks are often bated with smaller fish or squid depending on species targeted.

Main species targeted: barracuda, sharks, tuna-like species (e.g., kawkawa)

Deep sea 
(purse 
seine)

A large net, usually of medium mesh size. It is deployed using two vessels. 
Divers in the water identify a school of fish and the vessels circle the school. 
Divers dive down and tie off (close) the bottom of the net which is then dragged 
onto the boat.

Main species targeted: mainly semi-pelagic species such as kawakawa, but also 
snappers, barracudas

Seine net Usually, a fairly small-meshed net of varying size. Can be very large. It is 
deployed out in the open water in the lagoon. A number of people proceed to 
haul the net onto the beach, while fishers in the water assist by making sure the 
net does not get caught on the bottom. The net tends to scrape the bottom 
substrate (much like a trawl) and catch species and individuals of all sizes, and is 
therefore considered a destructive gear.

Main species targeted: rabbitfish, sea grass parrotfish (not the same as S. 
ghobban found on the reef), as well as juveniles of snappers, barracudas, 
emperors, and semi-pelagics like kawakawa.

Additional information and images of fish species can be found in Table 3 an online resource
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across the landscape. A compressed simplified version of the complete social net-
work has been drawn atop the seascape (Figure 20.3) showing subgroups based on 
gear type. (NOTE: if interested, see additional material from the book website for 
how to do this). Previous research (Crona and Bodin 2006) has shown that fishing 
gear type often correlates with relationally defined subgroup of fishers (as you may 
also have discovered in the second part of Exercise 2). Because of this identified 
correlation, it makes sense to divide the network into gear-defined subgroups. In this 

Figure 20.3 The social network of fishers relative to the seascape and fishing grounds. Nodes 
correspond to subgroups defined by gear type used (and node size is proportional to size of sub-
group). The figure helps depict the extent of communication among subgroups of fisher using 
different gears who may target different (and sometimes similar) fish species in different locales 
throughout the seascape. DS = Deep sea, GN = Gill net, SN = Seine net, HL = Hand line, SG = 
Spear gun, MM = Middle men
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new network, each node represents a gear type subgroup and any ties represent 
subgroup interaction.

Use Figure 20.3, along with your answers and reflections from the first part of 
Exercise 3 to consider the concordance between different social and ecological pro-
cesses and its implications:

Q15  Which gear-defined subgroups are communicating more than others, and with 
whom?

Q16  Are some fishers more (or less) decoupled from the other groups? Who would 
gain (or lose) most from increased knowledge and information exchange?

Q17  Consider the shared knowledge of fish species across different scales and 
localities. Which gear-defined groups are likely to have similar knowledge? 
Take into account subgroup communication as well as whether subgroups are 
targeting the same species.

Q18  Can you imagine any potential conflicts between different fishers targeting the 
same species (at similar or different localities)? Or between groups targeting 
interdependent species (e.g., predator and prey)?

Q19  To what extent might potential conflicts between subgroups of fishers (such as 
targeting the same species), coincide with social relations? What might the 
implications of such overlap (or lack thereof) be for conflict resolution?

 SYNTHESIS

Let’s take a step back and broaden our perspective and consider the following:

Q20  Consider the social and the ecological parts of the coupled social–ecological 
system (SES) we studied here—do they “match up” or align? Are there any 
apparent mismatches?

Q21  To what extent are the issues and themes of the lab specific to the context of 
small-scale fisheries vs. other heterogeneous social–ecological landscapes 
such as small-scale agricultural systems? Watershed management? Urban sys-
tems, forests, or parks and nature preserves? Choose another type of social–
ecological landscape and explain.

Q22  Consider the shared knowledge of fish species operating over different scales 
and localities and think particularly about the kind of knowledge outlined in 
the introduction where focus was on understanding ecosystem processes. 
Which subgroup would you judge as having the most advanced understanding 
of ecosystem processes? Why?
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Q23  Consider if some fishers increased their fishing efforts towards specific target 
species and specific localities. Can you identify any particularly vulnerable 
species and/or localities?

 CONCLUSIONS

In this lab, we explored how the communication networks of resource users align 
with species distribution patterns to explore how patterns of social communication 
match ecological processes. We used a fishery example, but any human-dominated 
landscape could be analyzed in a similar fashion. The comparison of social net-
works and ecological processes was, in this lab, qualitative. More quantitative 
approaches are possible (examples include Janssen et al. 2006; Cumming et al. 
2010; Johnson and Griffith 2010; Bodin and Tengö 2012; Guerrero et al. 2015; 
Treml et al. 2015; Bodin et al. 2014).

Resource extraction behavior and knowledge generation are inherently social 
processes affected by social embeddedness (Johannes 2002). How knowledge of 
ecological processes is distributed throughout community networks, and how this 
knowledge is translated into institutions that regulate extraction, are both impacted 
by social processes such as influence and diffusion, and are crucial for understand-
ing spatial mismatches. The dilemma of the commons (Hardin 1968; Ostrom 1990), 
which can result in overexploitation and resource depletion, can be overcome 
through social collaboration and development of extractive norms (Ostrom 1990, 
2005). A prerequisite for such collaboration is some basic communication and 
knowledge sharing to forge a collective understanding of the status of the system to 
be managed. Hence, communication between groups targeting similar species and 
operating in overlapping locations is of vital importance to avoid resource degrada-
tion and enhance the capacity for sustainable management.
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A
Active remote sensing/active sensors, 4–5
Adequacy, 214. See also Reserve design
Adjacencies, 54, 56
Advice for instructors, vii
Aerial photographs/photography, 21, 23, 25, 

27–29, 31, 32, 34
African continent, 326, 328
Agriculture, 24, 158, 161, 277, 323
Anisotropy, 54
Aquatic systems. See Coral reefs; 

Eutrophication; Fisheries; Fish 
habitat; Reefs; Seascape(s); Water 
quality; Watershed

ArcGIS/ArcMap, 12, 245, 248
Australia, 211, 224
Autocorrelation/autocorrelograms,  

65, 71, 182

B
Bandwidth, 7
Betweenness centrality, 332. See also Network 

analysis
Biodiversity target, 216
Boundary length modifier (BLM), 218, 224
British Columbia, Canada, 29

C
Carbon, 289

field exercise, 293
flux, 296–298
forest fragmentation (impact of), 295–296
land cover, 294

Reducing emissions from deforestation and 
forest degradation (REDD), 298

scaling, 292
stock, 290

Centrality measures, 332. See also Network 
analysis

Citizen science, 27, 41
City parks, 283
Classification, 27. See also Photointerpretation

categorical vs. continuous, 175, 187–189
classification error, 35, 36
classification scheme, 30, 34, 36, 37
image thresholding, 16, 187
National Land Cover Data Set (NLCD), 

61, 160, 172
Color channel, 12
Commons governance, 327, 339
Complementarity, 213
Component. See Network analysis
Composition. See Landscape composition
Conditional probabilities, 139
Conefor software, 191, 230, 241, 245

applications and uses, 252
input, 241
input extension for GIS, 248, 249

Configuration. See Landscape configuration
Connectivity, definition, 231  

See also Landscape connectivity
actual, 195
comparison between landscape and patch 

connectivity, 195
critical threshold(s), 97
functional, 195
habitat reachability, definition,  

232, 236, 237

Index



342

Connectivity (cont.)
intrapatch vs. interpatch connectivity, 

definition, 232, 236, 239
patch, definition, 51, 52, 58, 67, 83–85
potential, 195
stepping stone patch(es), 231, 244, 246
structural, 195

Contagion (C), 54, 55, 98
Coral reefs, 301, 303, 319
Cor_len, definition, 94
Correlation coefficient (r), 66
Correlogram(s), 182
Critical threshold(s), 97

D
Degree centrality, 197, 332
Dispersal, 198, 246, 248
Dispersal flux, 243, 244
Distance decay, 67
Disturbance, definition, 30, 146, 175, 176, 

179, 182
bark beetle, 177, 179, 180
fire, 177, 180, 187
HARVEST Lite model, 145
Normalized Burn Ratio (NBR), 181
patch, 146
recovery, 153
time since disturbance, 139

Domain, 197, 204
Dominance (D), 48–51
Drones. See Unmanned aerial vehicles  

(UAVs)

E
Ecosystem processes, 275
Ecosystem services, 275, 289, 323

trade-offs, 281, 323
Edge:area ratio, 52
Edge density, 52
Edge/edge habitat/edge width, 52, 145, 147, 

153, 158, 295
Efficiency, 214. See also Reserve design
Eigenvector, 131
Eight (8)-neighbor rule. See Neighbor rules
Electromagnetic spectrum, 4
Equilibrium state, 131
Equivalent Connectivity, 236–238, 245.  

See also Network analysis
Error(s)

classification, 35, 36
geometric, 35

positional, 35
radiometric, 35
relief displacement, 35

Eutrophication, 276

F
False color composite, 14
Feedback(s), 304, 323
Field data/exercise, 65, 72, 293
Fisheries, 325, 328, 331, 335, 337
Fish habitat, 23
Fishing gear(s), 308, 320, 331, 336
Flightline, 23
Forest. See also Disturbance

aerial photographs/photography, 21, 23, 
31, 32, 34

harvest, 177, 179, 180
HARVEST Lite model, 145, 146, 148
historical, 23–26, 28–31
loss, 289
Markov model, 129, 136, 139
productivity, 37, 38
tropical, 255–256, 289–291

Four (4)-neighbor rule. See Neighbor rules
Fractals, 78
FRAGSTATS, instructions, 45, 57–60, 158, 

176, 186, 188
Functional connectivity, 195

G
Gaussian random value (GRV), 88
Geographic Information System (GIS), 79.  

See also ArcGIS/ArcMap
Geometric error(s), 35
Google Earth, 14, 41, 42
Grain, 5
Graph theory. See Network analysis
GS+ software, 176, 182

H
Habitat reachability, definition, 232, 236, 237
Harvest (forest), 177, 179, 180
HARVEST Lite model, 145

assumptions, 148
instructions, 146

Heterogeneity, 35, 68, 175, 279, 280, 289, 329
High spatial resolution imagery, 6, 27
History, importance of, 139
Hub. See Network analysis
Hyperspectral. See Remote sensing
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I
Image thresholding, 16, 187
Information theory, 46
Instructor’s notes, vii
Integral Index of Connectivity (IIC).  

See Network analysis
Interior habitat, 145, 153
Interpatch connectivity, definition, 232,  

236, 239
Intrapatch connectivity, definition, 232,  

236, 239
Isotropic, 78, 108

K
Kriging, 79, 185

L
Landsat, 12

Enhanced Thematic Mapper+ (ETM+), 7
Thematic Mapper (TM), 5, 6

Landscape change, 21, 41, 57, 129, 138, 143
transition matrix (P), 130

Landscape composition, 46, 47, 49, 50, 158. 
See also Landscape metrics

Landscape configuration, 51, 53, 55, 158. See 
also Landscape metrics

Landscape connectivity, definition, 193, 194, 
229, 231, 243–245. See also 
Landscape metrics; Network 
analysis

actual, 195
functional, 195
patch connectivity (comparison with), 195
patch, definition, 51, 52, 58, 67, 83–85
potential, 195
reachability (habitat reachability concept)

connector fraction, 244–245
intra-, inter-, flux fraction, 243–245

structural, 195
Landscape metric(s), definition, 45, 47, 106, 

157, 175, 176. See also Network 
analysis

adjacencies (qi,j), 54, 56
comparison with spatial statistics, 188–189
Contagion (C), 54, 55, 98
Cor_len, 94
degree centrality (see Network analysis)
domain (see Network analysis)
Dominance (D), 48, 49–51
edge:area ratio, 52

edge density, 52
FRAGSTATS, instructions, 45, 57–60, 

158, 176, 186, 188
Integral Index of Connectivity (IIC)  

(see Network analysis)
largest cluster (L.C.), 94

L.C. edge, 94
L.C. fractal, 94
L.C._rms, 94
L.C. size, 94

largest component (see Network analysis)
link density (see Network analysis)
mean patch size (MPS), 52
METALAND/Metric Finder, 157, 159, 

167, 169, 171
N matrix, 56
number of patches (NP), 51
patch, 51, 52, 58, 67, 83–85
Perc/freq, 94
probability of adjacency (qi,j), 54
Probability of Connectivity (PC)  

(see Network analysis)
proportion (pi), 47
Q matrix, 54, 56
Sav size, 94
S_Freq, 94
Shannon Evenness Index (SHEI), 48, 

49–51
TTL clusters, 94
TTL edges, 94

Landscape pattern, 43, 46, 105, 143, 153.  
See also Landscape metrics

subjective/qualitative analysis, 159, 181
Landscape position, 36
Landscape replication, 159
Largest Cluster (L.C.) metrics, 94

L.C. metrics: L.C._rms, L.C. size, L.C. 
edge, L.C. fractal, definitions, 94

Largest component index, 200
Light Detection and Ranging  

(LIDAR), 5
Links. See Network analysis
Lyme disease, 158, 166

M
Madison, Wisconsin, USA, 59
Manual interpretation, 27–29.  

See also Photointerpretation
Marine landscapes, 46, 206, 273, 305, 325, 

328, 335, 337
Marine protected area (MPA), 206
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Markov (and Markov.exe application)
chain, 139
input file, 136
instructions, 136
model, 129
output file, 137
projection, 132
validation, 138
verification, 135

Marxan software, 191, 211, 212, 223
description, 216–221
input files, 219–220
instructions, 222
output files, 221

Maryland, USA, 100
Mean Component Size (MCS), 234
Mean Patch Size (MPS), 52
MEM. See Moran’s Eigenvector Mapping 

(MEM)
Memory, 139
Metacommunities, 255, 256
METALAND, 157, 159, 167, 169, 171
Metric Finder, 157, 159, 161–165, 171
Midpoint displacement algorithm, 89
Misclassification, 36
Model(s). See also Simulation models

ecosystem processes, 275
forest harvest, 177, 179, 180
HARVEST Lite, 145, 146, 148
Markov.exe, 129, 136, 139
NetDraw software, instructions, 330–334
People in Ecosystems Watershed 

Integration (PEWI), 323
projection, 132
QRULE, instructions, 84, 88, 90, 94–96
Remmel-Fortin code, 108
Ucinet software, 329
validation, 138
verification, 135
watershed, 275, 323

Modularity, 334
Moisture Stress Index (MSI), 181
Moran’s Eigenvector Mapping (MEM), 

definition, 264–265, 265, 268
Multifractal maps, 88
Multispectral, 6, 7
Multivariate statistics, 256, 264

N
National Land Cover Data Set (NLCD), 61, 

160, 172
NDVI. See Normalized Difference Vegetation 

Index (NDVI)

Neighbor rules, 83, 85
nearest (4) neighbor rule, 51, 53, 58, 59, 85
next-nearest (8) neighbor rule, 52, 58, 59, 

85, 86
third-nearest (12) neighbor rule, 85, 86

NetDraw application, 329
Network analysis, definition, 191–207, 195, 

229, 325
betweenness centrality, 332
capercaille, 245–251
centrality measures, 332
component, 196
degree centrality, 197, 332
domain, 197
Equivalent Connectivity, 236, 237–238, 245
example images, 196, 203, 231, 235
hub, 197
Integral Index of Connectivity (IIC), 230, 

236, 237
interpatch connectivity, 232, 236, 239
intrapatch connectivity, 232, 236, 239
largest component, 197, 200, 204
limitations, 233–236
link density, 197, 200
links, 195, 197, 198, 204, 231
mean component size (MCS), 234
modularity, 334
node degree, 204
nodes, definition, 195, 197, 198, 203,  

230, 231
number of components (NC), 233
number of links (NL), 233
Pajek software, 205
path, 231
Probability of Connectivity (PC), 230,  

238, 245
reachability (fractions of habitat 

reachability concept)
intra-, inter-, flux fraction, 243–245

topology, 244
undirected graphs, 231
visualization, 329–334
weighted/unweighted, 231

Neutral landscape model (NLM), 83, 86, 100, 
105, 295

Neutral model, 84
New England, USA, 60, 160, 172
Next-nearest neighbor rule. See Neighbor rules
Niche, definition, 257
NLCD. See National Land Cover Data Set 

(NLCD)
N matrix, 56
Nodes. See Network analysis
Non-stationarity, 139
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Normalization (of landscape metrics), 48
Normalized Burn Ratio (NBR), 181
Normalized Difference Vegetation Index 

(NDVI), 15, 16
Nugget, definition, 70, 182
Number of components (NC), 233
Number of links (NL), 233
Number of patches (NP), 51

O
Oblique (photography), 32
Ordination, 259, 261
Orthophotography/Orthorectification, 28, 29, 

32, 33, 35

P
Pacific Northwest, USA, 129, 132
Pajek software, 205
Panama, 256, 257, 290, 292
Panchromatic, 7, 27
Passive sensors, 4
Patch, definition, 51, 52, 58, 67,  

83–85
Pattern analysis, 43. See also Landscape 

metrics
subjective/qualitative, 159, 181

Perc/freq, definition, 94
Percolation threshold, 97
Philippines, 304, 305, 320
Phosphorus, 278
Photointerpretation, 27–29
Photo pair(s), 25
Polygon delineation, 27
Positional error, 35
Potential connectivity, 195
Principal component analysis  

(PCA), 259
Probability of adjacency (qi,j), 54
Probability of Connectivity (PC).  

See Network analysis
Productivity, 37
Proportion (pi), 47
Protected areas, 201–207, 211

design, 223–224

Q
QGIS, 245, 248
Q matrix, 54, 56
QRULE software, instructions, 84, 88, 90, 

94–96
Quebec, Canada, 42

R
R (software and/or code), 65, 78, 79, 84, 105, 

108, 110, 191, 256
Radio Detection and Ranging (RADAR), 5
Radiometric error(s), 35
Radiometric resolution, 8
Range, 70, 182
RDA. See Redundancy analysis (RDA)
Reducing emissions from deforestation and 

forest degradation (REDD), 298
Redundancy analysis (RDA), 258–261, 264
Reefs, 301, 303, 319
Regime shift, 301, 306, 319
Relief displacement, 35
Remote sensing, 3–18, 21–38. See also 

Landsat and Vegetation indices
active sensors, 4, 5
aerial photography, 21, 25, 27–29, 31, 32, 34
bandwidth, 7
classification, 27, 30, 34–37
color channel, 12
electromagnetic spectrum, 4
error(s), 35, 36
false color composite, 14
flightline, 23
high spatial resolution imagery, 6, 27
hyperspectral, 7
image thresholding, 16, 187
Light Detection and Ranging (LIDAR), 5
misclassification, 36
multispectral, 6
National Land Cover Data Set (NLCD), 

61, 160, 172
Orthophotography/Orthorectification, 28, 

29, 32, 33, 35
passive sensors, 4
RADAR, 5
resolution, 5–8
spectral reflectance/response, 9, 10, 13
true color composite, 12
unmanned aerial vehicles (UAVs), 27

Reserve design, 198–199, 201–207, 223–224, 
245. See also Marxan

adequacy, 214
efficiency, 214
principles, 213
representation, 213

Resolution
radiometric, 8
spatial, 5, 6
spectral, 7, 8
temporal, 7

Restoration, 298
Riparian, 23, 276
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S
Sav size, definition, 94
Scale. See also Resolution

detection, 65
mismatch, 336

Seascape(s), 46, 206, 273, 305, 325, 328,  
335, 337

Semivariograms/Semivariance, definition, 65, 
69, 71, 176, 182, 184, 188

interpretation, 75
Sensitivity analysis, 145, 222
Sensors. See Remote sensing
S_Freq, definition, 94
Shannon Evenness Index (SHEI), 48–51
Sill, 70, 182
Simple random map, 86–88
Simulated annealing, 218, 219
Simulated landscape(s), 45, 65, 83, 108, 143
Simulation model(s), 143–145

HARVEST Lite, 145, 146, 148
Markov.exe, 129, 136, 139
People in Ecosystems Watershed 

Integration (PEWI), 323
QRULE, instructions, 84, 88, 90, 94–96
Remmel-Fortin code, 108
watershed, 275, 323

Social networks, 325
betweenness centrality, 332
centrality measures, 332
degree centrality, 332
examples, 333, 337
hub, 328
modularity, 334
NetDraw software, instructions, 330–334
nodes (actors), 327
ties (relations), 327, 330
Ucinet software, 329

Software/applications
ArcGIS/ArcMap, 12, 245, 248
Conefor software, 191, 230, 241, 245, 248, 

249, 252
GS+ software, 176, 182
HARVEST Lite, 145, 146, 148
Markov.exe, 129, 136, 139
Marxan, instructions, 191, 211, 212, 

216–221, 222, 223
NetDraw software, instructions,  

330–334
Pajek software, 205
People in Ecosystems Watershed 

Integration (PEWI), 323
QGIS, 245, 248
QRULE, instructions, 84, 88, 90, 94–96
Remmel-Fortin code, 108

R software/code, 65, 78, 79, 84, 105, 108, 
110, 191, 256

Spatial analyst extension (in ArcGIS), 15
Ucinet software, 329
Zonae Cogito application, 222, 223

Source-sink dynamics, 314
Spain, 246
Spatial analyst extension (in ArcGIS), 15
Spatial autocorrelation, definition, 66, 98, 

105–124, 263
Spatial compactness, 214–216, 224
Spatial dependence, 66, 67, 139
Spatial lag, 69
Spatial resolution, 5, 6
Spatial statistics, 66, 175, 179, 182. See also 

Spatial autocorrelation; 
Variography/variogram(s)

comparison with FRAGSTATS, 188–189
kriging, 79, 185
spatial dependence, 66, 67, 139
spatial lag, 69
trend-surface analysis, 264

Species penalty factor (SPF), 218
Spectral

reflectance, 9, 10
resolution, 7, 8
response curve, 10, 13

Stakeholder(s), 224, 326
Stationarity, 139
Steady-state, 131
Stepping stone patch(es), 231, 244, 246
Stereo-

stereo pair(s), 25, 26
stereoscope, 25, 26
stereovision, 25

Stochasticity, 138
Structural connectivity, 195
Systematic conservation planning, definition, 

211, 212. See also Marxan

T
Temporal resolution, 7
Terrain/terrain class(es), 36
Third-nearest (12) neighbor rule. See Neighbor 

rules
Time since disturbance, 139
Tipping point, 306
Topography/topographic relief, 36, 280
Topology (network topological position), 244
Transition matrix (P), 130
Tree height, 37
Trend-surface analysis, 264
True color composite, 12
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TTL clusters, definition, 94
TTL edges, definition, 94
Twelve (12)-neighbor rule. See Neighbor rules

U
UAVs. See Unmanned aerial vehicles (UAVs)
Ucinet software, 329
Umbrella species, 201
Uncertainty, 36
Unmanned aerial vehicles (UAVs), 27
Urban systems, 25, 282, 283

V
Vancouver, British Columbia, Canada, 12, 15
Variation partitioning, 266
Variography/variogram(s), definition, 65, 69, 

71, 176, 182, 184, 188
interpretation, 75

Vegetation indices
Moisture Stress Index (MSI), 181

Normalized Burn Ratio (NBR), 181
Normalized Difference Vegetation Index 

(NDVI), 15, 16
Vertical photographs, 32
Visible spectrum, 9, 14

W
Washington State, USA, 23
Water quality, 275
Watershed model, 275, 323
Willamette Valley, USA, 194,  

201, 202
Wyoming, USA, 176

Y
Yellowstone, 176

Z
Zonae Cogito application, 222, 223
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